
JSR 326 – Diagnosing
Deadly Javatm Platform
Problems

Steve Poole
IBM

2

Todays BOF
> Its a discussion – feel free to ask questions
> Its about

● Diagnosing Deadly Java Platform Problems
● the problem space

● Why “one size fits all” - doesn't
● Why size matters

● JSR 326 and Apache Kato
● What does “Post Mortem mean”
● Objectives
● What the API looks like now

● “Demoettes”
● Next steps
●

3

JSR 326 – Post Mortem JVM
Diagnostics API

● Raised by IBM
● Supported by Sun, Oracle , Intel , Eclipse , HP

, SAP, Nortel , ASF
● Expert Group consists of

● IBM , Sun , Intel , Oracle , dyna Trace
● 2 independents

● First Early Draft Review targeted for July 31
2009

● Looking to complete JSR by 1Q 2010

4

What does Post Mortem Mean?

> Post Mortem means “after the fact”
● Dead JVMs are not a pre-requisite
● Think “snap shot”

>

5

Problem Space

> Limited options for diagnosing problems
● Especially intermittent or unexpected problems

> Outside “Live Monitoring” there is no standard
way to get diagnostic information

● (Even “Live Monitoring” has issues)
> Tools space is fragmented

● Analysing “Out of Memory” problems is OK
● Most tools are JVM specific

● System.out.println is a common tool

6

Problem Space

> Lack of standard post mortem API is steadily
driving problem solving down the stack

> Industry spends significant resource diagnosing
customer application problems

> Emerging trends indicate this is going to get
worse

7

“Emerging trends indicate this is going
to get worse”

> Increase of multiple cores: 2,4,8,16,32,64,128...
> Growth of GB memory sizes: 1,2,4,8,100,1000...
> New languages : Ruby,Python,PHP …
> New capabilities: NIO, Shared Classes …
> Wider audience – clouds , billions of devices?

> Even “Live Monitoring” is effected – size of
system and rate of change makes analysis
and prediction increasing difficult...

8

Finally...

> We can't ask users to move to latest and
greatest Java to get better diagnosics

> We must improve diagnostics across the board
● Even if it's on a “best can do” basis
● Using whatever data is available

9

JSR 326 & Apache Kato
Objectives

> Create a standard Java API to enable new tools
which can interact seamlessly with the various
diagnostic output from multiple Java Virtual
Machines.

> API must standardize triggering and
consumption of post-mortem diagnostic
artefacts

> Develop API specification, reference
implementation and TCK as Open Source so
every one can participate

● Use “user stories” and demonstration tools to
keep the API real , credible and consumable

10

JSR 326 – just what are we designing?

11

JSR 326 – just what are we designing?

> A single “one size fits all” API approach is not
sensible

● Diagnostic artifacts are produced for various
reasons and with various contents

●

> Users have differing requirements
> 2 broad categories

● Data Visualization: “show me everything”
● Situation Analysis: look for specific problems,

snapshot monitoring
●

●

12

●Practical “TechDemos”

13

Can we help ?

> Why are there so many http
connections being
queued?

> Which monitor is locking all
threads ?

> How can I detect which
class is consuming a lot
of memory?

> Where is the native memory
going?

> Why did I run out of
sockets?

> Have we already seen this
problem?

> Deadlock analysis

> Native locks

> Non responsive sockets

> What made my JNI program
crash?

> Help me resolve this
IndexOutOfBounds
Exception

14

The API today

15

Basic API structure today

Process
Image

Address Space
Address Space

Address Space
Runtime

Runtime
Java Runtime

Heap
Heap

Thead
Thead

Thead

Object
ObjectObjectObjectObjectObjectObjectObject

Stack FrameStack FrameStack FrameLocal VariableLocal VariableLocal Variable
Class

MethodMethodMethod
Field

Field
Field

Possible API architecture

Analysis Tools

Java Heap View

Java Runtime View

Process Image View

Elf SVC PE Jextract HPROF PHD

Ruby Process View

Open
factories

proprietar
y plugins
proprietar
y plugins
proprietary
factories

17

Getting started

> Central registry using
javax.imageio.spi.ServiceRegistry

● Auto discovery
● Use the registry to get the Process Image
●

●

FactoryRegistry registry=FactoryRegistry.getDefaultRegistry();

File atifact=new File(“path to artifact”)

Image image=registry.getImage(artifact)

18

A sampler – what we can do right now

> Multiple JVM support
> Data Visualisation
> Simple queries
> Deadlock analysis

19

●JVM support Demoette

20

●JVM support Demoette

> HPROF support available
> Proprietary support for IBM core files coming
> Experimenting with alternative forms of artifact
> Exploring the API: not all data is available

● Can be missing for various reasons
● API has to deal with optional/missing data

21

●Exploring the API some more

For thread in runtime.getThreads()
For stackframe in thread.stackFrames()

For var in stackframe.getVariables()
Print var.name

Why do this?

 threads/stackframes/variables/name

When you can do this? - katoview

22

●Exploring the API some more

KatoView – command line exploration tool

Shows you can extract the data you need
(almost)

Deadlocks,
Queries,
Application specific data

Not the only way to explore though - how about a more familiar
way?

23

JDI Connector

> Lets you view standard dumps in a familiar way
> New experimental diagnostic artifacts will expose

local variable data too

24

Native memory problems...

> Some things are relatively straight forward
● List of native memory allocations

● Just a matter of understanding malloc!
● * Per platform * per memory allocation system * time

> What you do with the data?
● Conservative scan of the image can help find

potential owners
● For NIO we “know” where the allocation is held

● So MAT for NIO Native Memory is feasible

> BUT – generally, unless the allocator participates,
its always going to be hit and miss.

25

Can we help? - some now, some later ,
some much later

> Why are there so many http
connections being
queued?

> Which monitor is locking all
threads ?

> How can I detect which
class is consuming a lot
of memory?

> Where is the native memory
going?

> Why did I run out of
sockets?

> Have we already seen this
problem?

> Deadlock analysis

> Native locks

> Non responsive sockets

> What made my JNI program
crash?

> Help me resolve this
IndexOutOfBounds
Exception

26

Summary

> API development is still underway
● Have a good foundation
● Lots of potential
● Still much to do

27

Where next
> Visit the Apache Kato website
> Contribute to the open source project

● Participate on the mailing list
● Help develop the project

● Help us write better tools (or write your own)
● Tell us what problems you want us to tackle

28

Questions

?

29

Steve Poole
spoole@uk.ibm.com
kato-spec@incubator.apache.org

http://incubator.apache.org/kato/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Example API architecture
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	page20

