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Todays BOF 
> Its a discussion – feel free to ask questions
> Its about 

● Diagnosing Deadly Java Platform Problems
● the problem space

● Why “one size fits all” - doesn't
● Why size matters

● JSR 326 and Apache Kato
● What does “Post Mortem mean”
● Objectives
● What the API looks like now

● “Demoettes”
● Next steps
●
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JSR 326 – Post Mortem JVM 
Diagnostics API

● Raised by IBM
● Supported by Sun, Oracle , Intel , Eclipse , HP 

, SAP, Nortel , ASF
● Expert Group  consists of

● IBM , Sun , Intel , Oracle ,  dyna Trace 
● 2 independents

● First Early Draft Review targeted for July 31 
2009

● Looking to complete JSR by 1Q 2010
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What does Post Mortem Mean?

> Post Mortem means “after the fact” 
● Dead JVMs are not a pre-requisite
● Think “snap shot” 

>
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Problem Space

> Limited options for diagnosing problems
● Especially intermittent or unexpected problems

> Outside “Live Monitoring” there is no standard 
way to get diagnostic information

● (Even “Live Monitoring” has issues)
> Tools space is fragmented

● Analysing “Out of Memory” problems is OK
● Most tools are JVM specific

● System.out.println is a common tool
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Problem Space

> Lack of standard  post mortem API is steadily 
driving problem solving down the stack

> Industry spends significant resource diagnosing 
customer application problems

> Emerging trends indicate this is going to get 
worse
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“Emerging trends indicate this is going 
to get worse” 

> Increase of multiple cores: 2,4,8,16,32,64,128...
> Growth of GB memory sizes: 1,2,4,8,100,1000...
> New  languages : Ruby,Python,PHP …
> New  capabilities:  NIO,  Shared Classes …
> Wider audience – clouds , billions of devices? 

> Even “Live Monitoring” is effected – size of 
system and rate of change  makes analysis 
and prediction increasing difficult...
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Finally...

> We can't ask users to move to latest and 
greatest  Java to get better diagnosics

> We must improve diagnostics across the board
● Even if it's on a “best can do”  basis
● Using whatever data is available
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JSR 326 & Apache Kato
Objectives

> Create a standard Java API to enable new tools 
which can interact seamlessly with the various 
diagnostic output from multiple Java Virtual 
Machines.

>  API must standardize triggering and 
consumption of post-mortem diagnostic 
artefacts

> Develop API specification, reference 
implementation and TCK as Open Source so 
every one can participate

● Use “user stories” and demonstration tools to 
keep the API real , credible and consumable
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JSR 326 – just what are we designing?
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JSR 326 – just what are we designing?

> A single “one size fits all” API approach is not 
sensible

● Diagnostic artifacts are produced for various 
reasons and with various contents

●

> Users have differing requirements
> 2 broad categories

● Data Visualization:  “show me everything”
● Situation Analysis:   look for specific problems, 

snapshot monitoring
●

●
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●Practical “TechDemos”
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Can we help ?

> Why are there so many http 
connections being 
queued?

> Which monitor is locking all 
threads ?

> How can I detect which 
class is consuming a lot 
of memory? 

> Where is the native memory 
going?

> Why did I run out of 
sockets? 

> Have we already seen this 
problem? 

> Deadlock analysis

> Native locks

> Non responsive sockets

> What made my JNI program 
crash?

> Help me resolve this 
IndexOutOfBounds 
Exception
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The API today
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Basic API structure today
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Possible API architecture

Analysis Tools

Java Heap View

Java Runtime View

Process  Image View

Elf SVC PE Jextract HPROF PHD

Ruby Process View

Open 
factories

proprietar
y plugins
proprietar
y plugins
proprietary 
factories
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Getting started

> Central registry using 
javax.imageio.spi.ServiceRegistry

● Auto discovery
● Use the registry to get  the  Process Image
●

●

FactoryRegistry registry=FactoryRegistry.getDefaultRegistry();

File atifact=new File(“path to artifact”)

Image image=registry.getImage(artifact)
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A sampler – what we can do right now

> Multiple JVM support
> Data Visualisation
> Simple queries
> Deadlock analysis
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●JVM support Demoette
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●JVM support Demoette

> HPROF support available
> Proprietary support for IBM core files coming 
> Experimenting with alternative forms of artifact
> Exploring the API: not all data is available

● Can be missing for various reasons
● API has to deal with optional/missing data
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●Exploring the API some more

For thread in runtime.getThreads()
For stackframe in thread.stackFrames()

For var in stackframe.getVariables()
Print var.name

Why do this?

   threads/stackframes/variables/name

When you can do this?  - katoview
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●Exploring the API some more

KatoView – command line exploration tool

Shows you can extract the data you need 
(almost)

Deadlocks,
Queries,
Application specific data

Not the only way to explore though -  how about a more familiar 
way?  
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JDI Connector

> Lets you view standard dumps in a familiar way
> New experimental diagnostic artifacts will expose 

local variable data too
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Native memory problems...

> Some things are relatively straight forward
● List of native memory allocations 

● Just a matter of understanding malloc!
● * Per platform * per memory allocation system * time

> What you do with the data?
● Conservative scan of the image can help find 

potential owners
● For NIO we “know” where the allocation is held

● So MAT for NIO Native Memory is feasible

> BUT – generally, unless the allocator participates, 
its always going to be hit and miss. 
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Can we help? - some now, some later , 
some much later

> Why are there so many http 
connections being 
queued?

> Which monitor is locking all 
threads ?

> How can I detect which 
class is consuming a lot 
of memory? 

> Where is the native memory 
going?

> Why did I run out of 
sockets? 

> Have we already seen this 
problem? 

> Deadlock analysis

> Native locks

> Non responsive sockets

> What made my JNI program 
crash?

> Help me resolve this 
IndexOutOfBounds 
Exception
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Summary

> API development is still underway
● Have a good foundation
● Lots of potential
● Still much to do
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Where next
> Visit the Apache Kato website
> Contribute to the open source project

● Participate on the mailing list
● Help develop the project

● Help us write better tools (or write your own)
● Tell us what problems you want us to tackle
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Questions

?
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Steve Poole
spoole@uk.ibm.com
kato-spec@incubator.apache.org

http://incubator.apache.org/kato/
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