
Embedding Virtual
Machines in ATS

Shu Kit Chan
Yahoo
11/14/2023

● System Virtual Machine
○ Allows the running of a complete OS
○ E.g. VMWare, Docker, etc
○ Not what we want to talk about today!!!

● Process Virtual Machine
○ Application to provide programmable environment on a system
○ E.g. JVM, .NET framework
○ In this talk - LuaJIT or Wasm in ATS

Clarification on Definitions

Architecture for Lua Plugin

● With handler functions for proxy to call (1)
● Calling API functions that the proxy provides (2)

Plugin

Lua Script

LuaJIT or Lua*

OriginClient

(1)(2)

ATS

Lua API

● With handler functions for proxy to call (1)
● Calling API functions that the proxy provides (2)

Architecture for Wasm Plugin

Plugin

Wasm
module

Wasm runtime

OriginClient

(1)(2)

ATS

proxy-wasm

WAMR
● Bytecode Alliance project
● Written in C
● Interpreter or JIT / LLVM JIT
● Configurable options at compile time
● Low memory footprint

Wasmtime
● Bytecode Alliance project
● Written in Rust
● Based on Cranelift
● High memory footprint

Different Wasm Runtimes

WasmEdge
● Written in C++
● LLVM JIT
● High memory footprint
● Lots of focus on AI Inference use cases

V8
● Not yet supported in ATS Wasm plugin
● Written in C++
● Many dependencies / Complicated to get it to work

Different Wasm Runtimes

● The field evolves rapidly
● Each with different characteristics
● Change of runtime only possible for simple program
● Major investment involved when tools are used (e.g. profiling / debugging)

○ WAMR/Wasmtime - live debug support through lldb
○ Wasmtime - profiling with perf

● Different WASM proposals (extensions) supported by different runtime
● Trust in Security

○ Choice of implementation language
○ Maturity of processes handling CVE

● Performance !!!

Big Decision to Choose a Wasm Runtime

● Test: a small program to read a request header and add a request header
● Use h2load from a separate box

● Preliminary testing shows WAMR is the fastest
● Inconclusive

○ each runtime has many configuration options
○ Default may not be suitable for proxy-wasm
○ More tests needed

Quick Notes on Performance Testing

● Experiments done between Lua script, Header rewrite and Wasm module
● Lua script / Header rewrite < Wasm module -> LuaJIT is AWESOME!!!
● Resource Contention inside Wasm plugin -

More Performance Testing

Thread
Thread

Thread
Thread

Wasm Root
Context

TxnC
TxnC

TxnC
TxnC

Txn
Txn

C
C

C

Thread
Thread

Thread
Thread

Lua State TxnL
TxnL

TxnL
TxnC

Txn
Txn

L
L

L

Lua State
Lua State
Lua State

● No more single shared state. E.g.

● Same thing will happen for Wasm plugin if we support Multiple Root
Context

Downside of supporting Multiple VM instances

local test = 0

function do_global_read_request()
 ts.debug(“test: “ .. test)
 test = 1
end

● More VM instance more memory usage
○ LuaJIT has a 2GB memory limit

● Wasm plugin will be similar
○ Worse with wasmtime/WasmEdge with high memory footprint

Downside of supporting Multiple VM instances

● What?
○ 2GB limit - per process, regardless of number of Lua VM
○ Only able use address values in the low 31 bit space for memory used by GC
○ “PANIC: unprotected error in call to Lua API (not enough memory)”

● GC64 mode
○ Since 2016
○ Memory usage can be a tag bit larger
○ No visible performance impact - experiments done by OpenResty group

● GC64 with ATS Lua Plugin
○ Thanks to Wikipedia team!
○ Significant mmap overhead - https://github.com/apache/trafficserver/issues/7423
○ Turning off JIT fixed the performance issue
○ Theory - LuaJIT wasted too much to do JIT repeatedly and unsuccessfully
○ More Investigation needed!

LuaJIT Memory Limitation

https://github.com/apache/trafficserver/issues/7423

● OpenResty
○ LuaJIT GC64 mode - https://blog.openresty.com/en/luajit-gc64-mode/

● Apache APISIX
○ “Cloud Native API Gateway”
○ Built on top of Nginx/OpenResty
○ Programmable through LuaJIT and Wasm
○ Details of LuaJIT usage and comparison with Wasm -

https://api7.ai/blog/apisix-chooses-luajit

References

https://blog.openresty.com/en/luajit-gc64-mode/
https://api7.ai/blog/apisix-chooses-luajit

● LuaJIT is awesome!!!
○ Memory limit gone
○ Performance
○ Proven

● But Wasm is still the future
○ Language support
○ Interoperability
○ Safety first / Sandboxed approach
○ Performance / Memory Usage still to catch up!

Conclusion

● Performance Testing/Improvement
○ Resource contention
○ Test runtimes with different configuration options

● Tooling support
○ Profiling with perf
○ Debugging with lldb

● Use Cases
○ AI Inference with WASI-nn

● Runtime Support
○ V8

● Future Changes on Wasm

To Do - Wasm Plugin

● mmap issue with GC64 mode
● Adding support for TLS User Agent Hooks
● Any contributions/suggestions are welcome!

To Do - Lua Plugin

