

Implementing an Abdera Server

The 20-minute guide

The Key Components

● Abdera Servlet
● Provider
● Collection Adapter
● Workspace Manager
● Target Resolver / Target Builder
● Filter
● Workspace Metadata (WorkspaceInfo,

CollectionInfo, CategoriesInfo, CategoryInfo)

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

Abdera Filters

How requests are processed...

The Abdera servlet receives a request

Each Abdera Servlet instance
is associated with exactly one
Provider implementation.

The Provider is the component that
does all of the actual work. The
servlet just handles the creation of the
RequestContext and the serialization
of the ResponseContext.

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

Abdera Filters

How requests are processed...

After receiving the request, the
Abdera Servlet creates a
RequestContext object, which is
essentially a wrapper for the
HttpServletRequest object.

The RequestContext asks the
Provider for a “Target Resolver”, a
special object that is used to
determine the “Target” of the request.

Targets have an associated
TargetType. These map to specifics
kinds of Atompub artifacts like
Collections, Entries, Service
Documents, Categories Documents,
etc.

RequestContext

getTargetResolver()

resolve() Target

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How requests are processed...

Once the RequestContext is created,
the Abdera Servlet asks the Provider
for a collection of Filters that should
be invoked prior to passing the
request off to the Provider.

The filters are invoked using a model
identical to that used by Servlet
Filters, with each filter in the chain
forwarding the request on to the next
filter in the chain until the last filter
has been invoked.

Filters can either augment or intercept
the request.

Once all of the filters have been
invoked, the request is handed off to
the Provider for processing

Abdera Filters

RequestContext

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How requests are processed...

The Provider first determines whether
the request is for an Atom Service
Document.

If a service document is being
requested, the provider uses
information provided by the
Workspace Manager to build the
service document. The data used
comes from instances of the
WorkspaceInfo, CollectionInfo,
CategoriesInfo and CategoryInfo
interfaces.

Abdera Filters

RequestContext

Getting a service
document? Get the info
and build it!

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How requests are processed...

If the request is not for a service
document, the Provider uses the
Workspace Manager to select a
Collection Adapter to handle the
request. The Collection Adapter
exposes methods like getFeed,
getEntry, postEntry, etc, and is the
interface that bridges the Atompub
protocol to a specific back-end
implementation.

Abdera Filters

RequestContext

Not getting a service
document? Then get a
Collection Adapter

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How requests are processed...

Once a Collection Adapter is
selected, the provider will forward the
request context on to the appropriate
method as determined by the request
method, target and target type. For
instance, a GET method on a
Collection target will be dispatched to
the CollectionAdapter.getFeed()
method; a PUT method on an Entry
target will be dispatched to the
CollectionAdapter.putEntry() method.

Abdera Filters

RequestContext

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How requests are processed...

When the Collection Adapter needs to
construct a URL for a target, it can
use the Target Builder provided by the
Provider implementation.

The Collection Adapter accesses the
Target Builder via the
RequestContext.

Abdera Filters

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How requests are processed...

The Collection Adapter processes the
request and prepares a
ResponseContext object, handing
that back to the Provider.

Abdera Filters

ResponseContext

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How requests are processed...

The ResponseContext is passed back
through the chain of filters

Abdera Filters

ResponseContextTarget Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How requests are processed...

Then back out to the Abdera Servlet
which writes the response out to the
HttpServletResponse, completing the
request processing

Abdera Filters

ResponseContext

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How to implement a server
Anyone wishing to implement an Atompub server using Abdera needs to provide:

 - A Provider
 - One or more Collection Adapters
 - A Target Resolver
 - A Target Builder
 - A Workspace manager
 - Workspace metadata
 - Zero or more Filters

Abdera Filters

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How to implement a server

Abdera Filters

The Provider is the single most
important component. It determines
how requests are processed and
provides the Target Resolver and the
Workspace Manager

Abdera ships with two complete
Provider implementations
(DefaultProvider and BasicProvider).
A developer can choose to use these
or can choose to implement their own
Provider.

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How to implement a server

Abdera Filters

The target resolver uses information
such as the request URI to determine
which resource is being requested.

Abdera ships with two Target Resolver
implementations: RegexTargetResolver
and StructuredTargetResolver.

Developers can implement their own
Target Resolvers.

The RegexTargetResolver uses
regular expressions to analyze
the request URI and determine
the identity of the resource
being requested.

The StructuredTargetResolver
uses a predetermined and static
URL structure to determine the
identity of the resource being
requested.

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How to implement a server

Abdera Filters

The target builder uses information
provided by the Provider, the Request
Context and the user to construct URLs
for the various kinds of resources
associated with the server.

Abdera ships with the
TemplateTargetBuilder, which uses URI
Templates to construct the URIs

The StructuredTargetResolver
used by the DefaultProvider is
both a Target Resolver and a
Target Builder.

The DefaultProvider and
BasicProvider use default
Target Builder implementations
that can be replaced by
developers.

Custom provider
implementations will need to
provide their own Targer Builder
implementations, usually by
creating an instance of
TemplateTargetBuilder

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How to implement a server

Abdera Filters

The Workspace Manager keeps track of
the individual Workspaces and
Collections. It tells the provider which
collections are available, provides the
metadata necessary for to build the
Atompub service document, and helps
the provider select the CollectionAdapter
to which requests will be forwarded.

Workspace managers are fairly
specific to the Provider
implementation.

The DefaultProvider uses the
DefaultWorkspaceManager
implementation.

The BasicProvider uses the
BasicWorkspace workspace
manager.

Custom Provider
implementations can choose to
use these workspace managers
or can provide their own
WorkspaceManager
implementation. The provider
could even choose to implement
the Workspace manager
interface itself.

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How to implement a server

Abdera Filters

The various *Info interfaces
provide the information
necessary for building the Atom
service document.

This information is provided by
the Workspace Manager and is
used by the Provider.

How this information is provided
to the Workspace Manager
depends on the specific
implementation. The
BasicWorkspace, for instance,
uses *.properties files
discovered on the classpath to
build the metadata. The
DefaultWorkspaceManager,
however, requires the developer
to provide the information.

Target Buildler

Abdera Servlet

Provider

CollectionAdapter

Target Resolver

WorkspaceManager

WorkspaceInfo
CollectionInfo
CategoriesInfo
CategoryInfo

How to implement a server

Abdera Filters

The Collection Adapter is the
piece that actually implements
the business logic of the
Atompub server. It bridges the
protocol with the backend
persistence.

Implementations can vary
broadly. Developers can create
their own CA's, or use the JCR
adapter that ships with Abdera,
or use Adapters provided by
other packages such as google
feed-server, etc

Target Buildler

An Example

● In this first example, we will implement an
Atompub server using the DefaultProvider.

● The first thing we need to do is prepare the
Provider.

● The Provider extends the DefaultProvider and
provides some basic configuration metadata
public MyProvider extends DefaultProvider {
 public MyProvider() {
 super("^/([^\\/])+/");
 MyAdapter adapter = new MyAdapter();
 adapter.setHref("foo/acme/customers");
 SimpleWorkspaceInfo wi = new SimpleWorkspaceInfo();
 wi.setTitle("Customer Workspace");
 wi.addCollection(ca);
 customerProvider.addWorkspace(wi);
 }
}

An Example, continued

● Once the Provider is implemented, we need to
implement the Adapter.

● There are several ways to implement Adapters,
you could:
– Implement the CollectionAdapter interface directly

– Extend the AbstractCollectionAdapter

– Extend the AbstractEntityCollectionAdapter

– Extend the BasicAdapter

An Example, continued

● The AbstractCollectionAdapter and
AbstractEntityCollectionAdapter utilities classes
provide a number of helper functions and
handle various default implementation details
that make it easier to implement an Adapter.

● The BasicAdapter provides a greatly simplified
interface for creating Adapters but is fairly
limited in it's abilities. For instance, a
BasicAdapter would be incapable of supporting
features like feed paging.

An Example, continued

● For this example, we will extend
AbstractEntityCollectionAdapter...

public class MyAdapter extends AbstractEntityCollectionAdapter<Customer> {
 ...
 public Customer postEntry(
 String title,
 IRI id,
 String summary,
 Date updated,
 List<Person> authors,
 Content content,
 RequestContext request)
 throws ResponseContextException {
 ...
 }
 ...
 public void deleteEntry(
 String resourceName,
 RequestContext request)
 throws ResponseContextException {
 ...
 }
 ...
 // other methods
}

An Example, continued

● The DefaultProvider uses the
StructuredTargetResolver and the
DefaultWorkspaceManager implementations,
so we do not have to provide those for our
example.

● The final step is to deploy the servlet
<web-app ... >
 <servlet>
 <servlet-name>AbderaServlet</servlet-name>
 <servlet-class>org.apache.abdera.protocol.server.servlet.AbderaServlet</servlet-class>
 <init-param>
 <param-name>org.apache.abdera.protocol.server.Provider</param-name>
 <param-value>com.foo.example.MyProvider</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>AbderaServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

An Example, continued

● That's basically it.
● Of course, I did gloss over a bunch of the

details in the Collection Adapter
implementation.

Another Example

● The BasicProvider makes things even easier.
For the BasicProvider, all you need to do is
provide a Collection Adapter implementation
and a *.properties file.

● Properties files need to be located in the
classpath under abdera.adapters.*

● The name of the properties file is the ID of the
adapter (e.g. foo.properties, “foo” is the ID)

feedUri=http://localhost:9002/foo
adapterClassName=com.foo.example.MyAdapter
title=Feed Title
author=John Doe

Another Example, continued

● Then we just deploy the servlet.

<web-app ... >
 <servlet>
 <servlet-name>AbderaServlet</servlet-name>
 <servlet-class>org.apache.abdera.protocol.server.servlet.AbderaServlet</servlet-class>
 <init-param>
 <param-name>org.apache.abdera.protocol.server.Provider</param-name>
 <param-value>org.apache.abdera.protocol.server.provider.basic.BasicProvider</param-
value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>AbderaServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Yes, that's it.

And yes, I did gloss over the details of the Collection Adapter implementation...
again. Patience, my friends.

Yet another example

● To achieve the maximum flexibility in your
Atompub server implementation, you can
implement your own Provider,
WorkspaceManager, TargetResolver and
Collection Adapter.

● A couple of helper classes are provided to
make it easier: AbstractProvider,
AbstractWorkspaceProvider,
AbstractWorkspaceManager,
RegexTargetResolver, etc

Yet another example, continued

● AbstractProvider is the root of all Providers
discussed thus far and handles the default
request dispatching implementation. Unless
you have a very good reason not to, every
Provider implementation should extend this
class.

● AbstractWorkspaceProvider extends
AbstractProvider and implements the
WorkspaceManager interface. This allows a
Provider to act as it's own WorkspaceManager.

Yet another example, continued

● AbstractWorkspaceManager provides the basic
functionality for WorkspaceManager
implementations.

● RegexTargetResolver is a Target Resolver
implementation that uses regular expressions
to analyze the request URI's and select the
Target Resource and identify it's Type.

● Adventurous developers can implement their
own Target Resolver's if they wish.

Yet another example, continued
public class CustomProvider
 extends AbstractWorkspaceProvider {

 private final CollectionAdapter adapter;

 public CustomProvider() {

 this.adapter = new SimpleAdapter();

 super.setTargetResolver(
 new RegexTargetResolver()
 .setPattern("/atom(\\?[^#]*)?", TargetType.TYPE_SERVICE)
 .setPattern("/atom/([^/#?]+);categories", TargetType.TYPE_CATEGORIES, "collection")
 .setPattern("/atom/([^/#?;]+)(\\?[^#]*)?", TargetType.TYPE_COLLECTION, "collection")
 .setPattern("/atom/([^/#?]+)/([^/#?]+)(\\?[^#]*)?", TargetType.TYPE_ENTRY, "collection","entry")
 .setPattern("/search", OpenSearchFilter.TYPE_OPENSEARCH_DESCRIPTION)
);

 setTargetBuilder(
 new TemplateTargetBuilder()
 .setTemplate(TargetType.TYPE_SERVICE, "{target_base}/atom")
 .setTemplate(TargetType.TYPE_COLLECTION, "{target_base}/atom/{collection}{-opt|?|q,c,s,p,l,i,o}{-join|&|
q,c,s,p,l,i,o}")
 .setTemplate(TargetType.TYPE_CATEGORIES, "{target_base}/atom/{collection};categories")
 .setTemplate(TargetType.TYPE_ENTRY, "{target_base}/atom/{collection}/{entry}")
 .setTemplate(OpenSearchFilter.TYPE_OPENSEARCH_DESCRIPTION, "{target_base}/search")
);

 SimpleWorkspaceInfo workspace = new SimpleWorkspaceInfo();
 workspace.setTitle("A Simple Workspace");
 workspace.addCollection(
 new SimpleCollectionInfo(
 "feed",
 "A simple feed",
 "/atom/feed",
 "application/atom+xml;type=entry"
));
 addWorkspace(workspace);
 }

 ...

Yet another example, continued

● As you can see, this example is a little more
involved.

● The Custom Provider needs to initialize the
adapter, the target resolver, the target builder,
set the workspace metadata, etc

● The example uses the stock implementations of
the metadata interfaces (e.g.
SimpleWorkspaceInfo, SimpleCollectionInfo,
etc). Developers can use their own impl's.

● And yes, I'm going to gloss over the Collection
Adapter implementation details again.

Yet another example, continued

● Once the Provider is implemented, just deploy
the servlet...
<web-app ... >
 <servlet>
 <servlet-name>AbderaServlet</servlet-name>
 <servlet-class>org.apache.abdera.protocol.server.servlet.AbderaServlet</servlet-class>
 <init-param>
 <param-name>org.apache.abdera.protocol.server.Provider</param-name>
 <param-value>com.foo.example.CustomProvider</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>AbderaServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Again, that's pretty much it.

Other details

● DefaultProvider and BasicProvider each
generate Atompub Service documents that are
specific to each provider implementation.

● Custom Providers will generate service
documents using the default code provided in
AbstractProvider unless the developer chooses
to override the getServiceDocument method.

● For now, if you want to add extension elements
to the service document, you'll need to
generate the document yourself.

Other details, continued

● All providers can have filters.
public MyProvider extends DefaultProvider {
 public MyProvider() {
 super("^/([^\\/])+/");
 MyAdapter adapter = new MyAdapter();
 adapter.setHref("foo/acme/customers");
 SimpleWorkspaceInfo wi = new SimpleWorkspaceInfo();
 wi.setTitle("Customer Workspace");
 wi.addCollection(ca);
 customerProvider.addWorkspace(wi);

 addFilter(
 new MyFilter(),
 new MyOtherFilter());

 }
}

public MyFilter implements Filter {
 public ResponseContext filter(
 RequestContext request,
 FilterChain chain) {
 // do filter like things, then call the next filter
 return chain.next(request);
 }
}

Filters are invoked in the order they are registered

Collection Adapters

● The Collection Adapter interface exposes
methods that model the definition of the
Atompub protocol...

public interface CollectionAdapter {

 ResponseContext postEntry(RequestContext request);

 ResponseContext deleteEntry(RequestContext request);

 ResponseContext getEntry(RequestContext request);

 ResponseContext putEntry(RequestContext request);

 ResponseContext getFeed(RequestContext request);

 ResponseContext getCategories(RequestContext request);

 ResponseContext extensionRequest(RequestContext request);

}

Media Collection Adapters

● If the Collection Adapter needs to support
Atompub Media Link Entries, it needs to also
implement the MediaCollectionAdapter
interface
public interface MediaCollectionAdapter
 extends CollectionAdapter {

 ResponseContext postMedia(RequestContext request);

 ResponseContext deleteMedia(RequestContext request);

 ResponseContext getMedia(RequestContext request);

 ResponseContext putMedia(RequestContext request);

}

Transactional

● Collection Adapters can also implement the
Transactional interface.

● The Provider will call the start/end methods on
the Transactional interface before and after
invoking the Collection Adapter; and will call the
compensate method when an error occurs.

public interface Transactional {

 void start(RequestContext request) throws ResponseContextException;

 void end(RequestContext request, ResponseContext response);

 void compensate(RequestContext request, Throwable t);

}

Abstract Collection Adapters

● The AbstractCollectionAdapter and
AbstractEntityCollectionAdapter base classes
provide helpful default impl for many functions
that will need to be implemented by most CA's.

● AbstractCollectionAdapter implements the
CollectionAdapter, MediaCollectionAdapter,
Transactional and CollectionInfo interfaces.

● AbstractEntityCollectionAdapter extends
AbstractCollectionAdapter makes it easy to
build Collections backed by a set of entities -
such as a database row, domain objects, or
files.

BasicAdapter

● The BasicAdapter offers a simplified
CollectionAdapter interface with constrained
functionality.

● BasicAdapter can be used to create very simple
Atompub servers
public abstract class BasicAdapter
 implements CollectionAdapter {

 ...

 public abstract Feed getFeed() throws Exception;

 public abstract Entry getEntry(Object entryId) throws Exception;

 public abstract Entry createEntry(Entry entry) throws Exception;

 public abstract Entry updateEntry(Object entryId, Entry entry) throws Exception;

 public abstract boolean deleteEntry(Object entryId) throws Exception;

}

That's it

● For more information, see the API
documentation and the sample code.

● Feedback and questions should be directed to
the abdera-dev and abdera-user mailing lists.

● http://incubator.apache.org/abdera

http://incubator.apache.org/abdera

