
January 25, 2011 Richard S. Hall

Learning to Ignore OSGi

January 25, 2011 Richard S. Hall

Modularity

● This presentation is not about modularity
● It assumes we all know what modularity is and

agree it is a good thing
● If you feel otherwise please leave or stop reading

● This presentation is about using OSGi as a
means to achieve modularity

January 25, 2011 Richard S. Hall

The reality

January 25, 2011 Richard S. Hall

The reality

● I asked a developer on a 250-plus bundle OSGi
project, “How much have you read about
OSGi?” The answer?

January 25, 2011 Richard S. Hall

The reality

● I asked a developer on a 250-plus bundle OSGi
project, “How much have you read about
OSGi?” The answer?
● “I've never read any OSGi documentation at all.”

January 25, 2011 Richard S. Hall

The reality

● I asked a developer on a 250-plus bundle OSGi
project, “How much have you read about
OSGi?” The answer?
● “I've never read any OSGi documentation at all.”

● Clearly, this can't be the approach of the
average corporate developer, can it?

January 25, 2011 Richard S. Hall

The reality

● I asked a developer on a 250-plus bundle OSGi
project, “How much have you read about
OSGi?” The answer?
● “I've never read any OSGi documentation at all.”

● Clearly, this can't be the approach of the
average corporate developer, can it?
● Shortly after the above, I read the following on an

OSGi-oriented mailing list:
“I represent the mainstream corporate developer
who only wants to consume OSGi but not
understand it.”

January 25, 2011 Richard S. Hall

Reality check

● We have people who think they can use a
technology in projects (or even base projects on
it) with little or no understanding of it

January 25, 2011 Richard S. Hall

Reality check

● We have people who think they can use a
technology in projects (or even base projects on
it) with little or no understanding of it
● This seems like it has a debatable value

proposition, but...

January 25, 2011 Richard S. Hall

Reality check

● We have people who think they can use a
technology in projects (or even base projects on
it) with little or no understanding of it
● This seems like it has a debatable value

proposition, but...

● Ok, fine, this presentation will help you learn to
ignore OSGi...

January 25, 2011 Richard S. Hall

The first step

The first step in learning to ignore OSGi is...

January 25, 2011 Richard S. Hall

The first step

The first step in learning to ignore OSGi is...

Accept the fact that
you can't completely

ignore OSGi!

Accept the fact that
you can't completely

ignore OSGi!

January 25, 2011 Richard S. Hall

Why?

January 25, 2011 Richard S. Hall

Why?

Java

Your application

January 25, 2011 Richard S. Hall

Why?

Java

OSGi framework

Your application

OSGi adds a layer to enforce modularity
by limiting type visibility

January 25, 2011 Richard S. Hall

Say, “What?”

To clarify, let's review how
type visibility is handled in

standard Java...

January 25, 2011 Richard S. Hall

Say, “What?”

Class path

…
rt.jarrt.jar bar.jarbar.jar baz.jarbaz.jar foo.jarfoo.jar zoo.jarzoo.jar

January 25, 2011 Richard S. Hall

Say, “What?”

Besides its own types,
which types are visible to your

application?

Class path

…
rt.jarrt.jar bar.jarbar.jar baz.jarbaz.jar foo.jarfoo.jar zoo.jarzoo.jar

YourYour
app.jarapp.jar

January 25, 2011 Richard S. Hall

Say, “What?”

All public types on the
class path are visible...

Class path

…
rt.jarrt.jar bar.jarbar.jar baz.jarbaz.jar foo.jarfoo.jar zoo.jarzoo.jar

YourYour
app.jarapp.jar

January 25, 2011 Richard S. Hall

Say, “What?”

All public types on the
class path are visible...

not very modular.

Class path

…
rt.jarrt.jar bar.jarbar.jar baz.jarbaz.jar foo.jarfoo.jar zoo.jarzoo.jar

YourYour
app.jarapp.jar

January 25, 2011 Richard S. Hall

Say, “What?”

How does OSGi impact this?

Class path

…
rt.jarrt.jar bar.jarbar.jar baz.jarbaz.jar foo.jarfoo.jar zoo.jarzoo.jar

YourYour
app.jarapp.jar

January 25, 2011 Richard S. Hall

Say, “What?”

OSGi only allows your
application to see public types

in java.* packages.

Class path

…
rt.jarrt.jar bar.jarbar.jar baz.jarbaz.jar foo.jarfoo.jar zoo.jarzoo.jar

YourYour
app.jarapp.jar
YourYour

app.jarapp.jar

OSGi

January 25, 2011 Richard S. Hall

Say, “What?”

Not even javax.* types
are visible!!!

Class path

…
rt.jarrt.jar bar.jarbar.jar baz.jarbaz.jar foo.jarfoo.jar zoo.jarzoo.jar

YourYour
app.jarapp.jar
YourYour

app.jarapp.jar

OSGi

January 25, 2011 Richard S. Hall

Say, “What?”

Why does OSGi do this?!

Class path

…
rt.jarrt.jar bar.jarbar.jar baz.jarbaz.jar foo.jarfoo.jar zoo.jarzoo.jar

YourYour
app.jarapp.jar
YourYour

app.jarapp.jar

OSGi

January 25, 2011 Richard S. Hall

Say, “What?”

Global type visibility makes it
difficult to know your code's
true dependencies and to

control what it actually sees.

Class path

…
rt.jarrt.jar bar.jarbar.jar baz.jarbaz.jar foo.jarfoo.jar zoo.jarzoo.jar

YourYour
app.jarapp.jar
YourYour

app.jarapp.jar

OSGi

January 25, 2011 Richard S. Hall

What about legacy code?

January 25, 2011 Richard S. Hall

What about legacy code?

foo.jar

foo.jar

baz.jarbaz.jar

bar.ja
r

bar.ja
r

January 25, 2011 Richard S. Hall

What about legacy code?

Ok, not really,
but sort of...

there is no magic
OSGi pixie dust!

foo.jar

foo.jar

baz.jarbaz.jar

bar.ja
r

bar.ja
r

January 25, 2011 Richard S. Hall

What about legacy code?

● The MuleSoft fallacy
● http://blogs.mulesoft.org/osgi-no-thanks/
● To paraphrase (not a quote):

– “OSGi provides little value and is too complex as
demonstrated by our failed attempt to make modularity
invisible when porting our huge legacy system to it with
over 150 third-party JARs.”

● There is no free lunch
● Modularity has to be considered at all levels

and will be visible

● Porting huge legacy systems to another platform
is complex. Period.

January 25, 2011 Richard S. Hall

What about legacy code?

● Legacy code is written under a different mental
model that no longer works in OSGi
● @deprecated global public type visibility

● Legacy code must be examined on a case-by-
case basis
● Does the code just provide types?
● Does it make assumptions about type visibility?

(i.e., use class loaders or Class.forName())
– If so, it likely won't work

January 25, 2011 Richard S. Hall

That's not all!

● Currently, we've only discussed which types
your application can see

● What about the flip side – which types from
your application can be seen by other code?

January 25, 2011 Richard S. Hall

That's not all!

YourYour
app.jarapp.jar

If your public classes are these cookies

January 25, 2011 Richard S. Hall

That's not all!

YourYour
app.jarapp.jar

If your public classes are these cookies
then everyone can see all your
cookies in a standard JAR file...

January 25, 2011 Richard S. Hall

That's not all!

YourYour
app.jarapp.jar

If your public classes are these cookies
then everyone can see all your
cookies in a standard JAR file...

again, not very modular.

January 25, 2011 Richard S. Hall

That's not all!

YourYour
app.jarapp.jar

How does OSGi impact this?

If your public classes are these cookies
then everyone can see all your
cookies in a standard JAR file...

again, not very modular.

January 25, 2011 Richard S. Hall

That's not all!

YourYour
app.jarapp.jar

In OSGi, no one sees any of your cookies.
Nothing!

bundlebundle
.jar.jar

If your public classes are these cookies
then everyone can see all your
cookies in a standard JAR file...

again, not very modular.

January 25, 2011 Richard S. Hall

That's not all!

YourYour
app.jarapp.jar

Why does OSGi do this?!
bundlebundle

.jar.jar

If your public classes are these cookies
then everyone can see all your
cookies in a standard JAR file...

again, not very modular.

January 25, 2011 Richard S. Hall

That's not all!

YourYour
app.jarapp.jar

Because it is impossible to protect your
code's implementation details if you

always expose everything.

bundlebundle
.jar.jar

If your public classes are these cookies
then everyone can see all your
cookies in a standard JAR file...

again, not very modular.

January 25, 2011 Richard S. Hall

JAR file comparison summary

Standard
JAR file

OSGi
JAR file

Class path type visibility
for internal code

All public
types

Only public
java.* types

Application type visibility
for external code

All public
types Nothing

January 25, 2011 Richard S. Hall

JAR file comparison summary

Standard
JAR file

OSGi
JAR file

Class path type visibility
for internal code

All public
types

Only public
java.* types

Application type visibility
for external code

All public
types Nothing

Do these differences seem minor enough to ignore?

January 25, 2011 Richard S. Hall

Wait a minute!

● You must be thinking
● “What a gyp!”
● “I thought we were going to learn how to ignore

OSGi?”

January 25, 2011 Richard S. Hall

Wait a minute!

● You must be thinking
● “What a gyp!”
● “I thought we were going to learn how to ignore

OSGi?”

● There's a lot you can ignore, but type
visibility isn't one of them...
● However, if you change your mental model to

operate under these new rules, you'll no longer
have to think about them
– And your JAR files will still work as standard JAR files

January 25, 2011 Richard S. Hall

A lot left to ignore

Java

OSGi framework

Your application

Expand focus

January 25, 2011 Richard S. Hall

A lot left to ignore

Security

Module

Lifecycle

Service

OSGi framework is
conceptually layered

January 25, 2011 Richard S. Hall

A lot left to ignore

Security

Module

Lifecycle

Service

You can ignore
security...we
always do

January 25, 2011 Richard S. Hall

A lot left to ignore

Security

Module

Lifecycle

Service

Handles type
visibility, so you
can't ignore this

January 25, 2011 Richard S. Hall

A lot left to ignore

Security

Module

Lifecycle

Service

Maybe you can
ignore this

January 25, 2011 Richard S. Hall

A lot left to ignore

Security

Module

Lifecycle

Service
You can ignore
this, although you
lose a decoupling
mechanism

January 25, 2011 Richard S. Hall

A lot left to ignore

Security

Module

Lifecycle

Service
Basically, all OSGi
API is from these
two layers, so we
can pretty much
ignore it all

January 25, 2011 Richard S. Hall

A lot left to ignore

Security

Module

Lifecycle

Service Ironically, these
are the thinnest
layers

January 25, 2011 Richard S. Hall

What about lifecycle?

January 25, 2011 Richard S. Hall

What about lifecycle?

Standard
JAR file

OSGi
JAR file

Class path type visibility
for internal code

All public
types

Only public
java.* types

Application type visibility
for external code

All public
types Nothing

Lifetime of JAR file Same as
JVM

Can come
and go

Another JAR file difference...

January 25, 2011 Richard S. Hall

What about lifecycle?

● You can ignore lifecycle if your code doesn't do
anything that may live on after it
● i.e., have things that need to be cleaned up

– Such as active threads, open files, open ports, etc.

January 25, 2011 Richard S. Hall

What about lifecycle?

● You can ignore lifecycle if your code doesn't do
anything that may live on after it
● i.e., have things that need to be cleaned up

– Such as active threads, open files, open ports, etc.

● If you do have such issues, then...
● Your code has explicit lifecycle requirements and

must implement a “bundle activator”
– i.e., provide “start” and “stop” callbacks

● Your code must not create or use long-lived
resources unless it has been started and not after it
has been stopped

January 25, 2011 Richard S. Hall

What about lifecycle?

● If you're concerned about not being able to
ignore the OSGi lifecycle API...

● Dirty little secret...
● You don't need to use the OSGi lifecycle API
● It's possible to create your own lifecycle layer

– And ultimately your own service-like layer
● However, the same sort of rules ultimately still

apply, they'll just be enforced by you
– And even then, your lifecycle layer will still need to be

implemented using OSGi API

January 25, 2011 Richard S. Hall

Revisiting legacy code

● For legacy code, the two biggest obstacles
when moving to OSGi are assumptions about
● Global type visibility
● Static lifecycle

January 25, 2011 Richard S. Hall

End of story?

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

End of story?

bundlebundle
.jar.jar

No!
A JAR file that can't see anything and
no one can see into isn't very useful!

January 25, 2011 Richard S. Hall

Sharing cookies

bundlebundle
.jar.jar

If you have some types you want to
share with other code, you need some

way to expose them...

January 25, 2011 Richard S. Hall

Sharing cookies

...OSGi allows you to export all
public types in a Java package.

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Sharing cookies

This gives you control over your code's
implementation details, since you only

expose what you want to external code.

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Sharing cookies

● You must explicitly list all packages
you wish to share in your JAR
manifest
● Export-Package:

 org.foo.p1,
 org.foo.p2

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Sharing cookies

● You must explicitly list all packages
you wish to share in your JAR
manifest
● Export-Package:

 org.foo.p1; version=1.0,
 org.foo.p2; version=1.1

● You should actually specify package
versions

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Sharing cookies

● You must explicitly list all packages
you wish to share in your JAR
manifest
● Export-Package:

 org.foo.p1; version=1.0,
 org.foo.p2; version=1.1

● You should actually specify package
versions

● Only the types in these listed
packages are shared
● You should keep this list short
● Unlisted packages are hidden

implementation details

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Sharing cookies

● You must explicitly list all packages
you wish to share in your JAR
manifest
● Export-Package:

 org.foo.p1; version=1.0,
 org.foo.p2; version=1.1

● You should actually specify package
versions

● Only the types in these listed
packages are shared
● You should keep this list short
● Unlisted packages are hidden

implementation details

Since tools can help generate this
syntax, you can potentially ignore it...
but it is probably better to understand

it for debugging purposes.

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Gimme your cookies

bundlebundle
.jar.jar

By default, your code only sees types in
java.* packages, so you'll almost certainly

need some way to ask for more...

January 25, 2011 Richard S. Hall

Gimme your cookies

...OSGi allows you to import required
types in other Java packages not

contained in your JAR file.

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Gimme your cookies

This gives you control over what external
types your code sees at execution time.

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Gimme your cookies

● You must explicitly list all required
external packages (except java.*
packages) in your JAR manifest
● Import-Package:

 org.foo.p1,
 org.foo.p2

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Gimme your cookies

● You must explicitly list all required
external packages (except java.*
packages) in your JAR manifest
● Import-Package:

 org.foo.p1; version=”[1.0,2.0)”,
 org.foo.p2; version=”[1.1,2.0)”

● With meaningful version ranges

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Gimme your cookies

● You must explicitly list all required
external packages (except java.*
packages) in your JAR manifest
● Import-Package:

 org.foo.p1; version=”[1.0,2.0)”,
 org.foo.p2; version=”[1.1,2.0)”

● With meaningful version ranges

● Only the external types in these
listed packages are visible
internally, in addition to internal and
java.* types

bundlebundle
.jar.jar

January 25, 2011 Richard S. Hall

Gimme your cookies

● You must explicitly list all required
external packages (except java.*
packages) in your JAR manifest
● Import-Package:

 org.foo.p1; version=”[1.0,2.0)”,
 org.foo.p2; version=”[1.1,2.0)”

● With meaningful version ranges

● Only the external types in these
listed packages are visible
internally, in addition to internal and
java.* types

bundlebundle
.jar.jar

Tools can again help here and generate
much of this using byte-code analysis,

but you'll still need to review it.

January 25, 2011 Richard S. Hall

JAR + metadata != module

● Once you've added export and import
metadata to your JAR files, you
basically have a module
● Albeit, maybe not a very meaningful one

January 25, 2011 Richard S. Hall

JAR + metadata != module

● Once you've added export and import
metadata to your JAR files, you
basically have a module
● Albeit, maybe not a very meaningful one

● Modules are not stalagmites, they
don't just form, they are a design
primitive
● Just like classes
● You need to think hard about

– What you put into a module
– What you expose from a module
– What you expose to a module

January 25, 2011 Richard S. Hall

JAR + metadata != module

● Once you've added export and import
metadata to your JAR files, you
basically have a module
● Albeit, maybe not a very meaningful one

● Modules are not stalagmites, they
don't just form, they are a design
primitive
● Just like classes
● You need to think hard about

– What you put into a module
– What you expose from a module
– What you expose to a module

Maximize cohesion,
minimize coupling!

January 25, 2011 Richard S. Hall

OSGi at execution time

● Even if we ignore everything else, once we have some
modules, they still need to run in an OSGi framework
● This is easily accomplished with most OSGi frameworks
● But what is actually happening?

b2.jarb2.jarb1.jarb1.jar

January 25, 2011 Richard S. Hall

OSGi at execution time

● The framework resolves module dependencies
● Resolving dependencies involves matching exported

packages to imported packages to ensure type consistency
● A module can't be used if its dependencies aren't satisfied

b2.jarb2.jarb1.jarb1.jar

January 25, 2011 Richard S. Hall

OSGi at execution time

● The framework enforces module boundaries
● Ensuring that only exported packages are exposed and only

imported packages are visible
● Each module gets a class loader to enforce isolation

b2.jarb2.jarb1.jarb1.jar

January 25, 2011 Richard S. Hall

OSGi at execution time

● After dependency resolution, OSGi gets out of the way
● It's just class loader delegation and application code

execution after that

b2.jarb2.jarb1.jarb1.jar

January 25, 2011 Richard S. Hall

Understanding search order

● OSGi class loading search order is strict and
consistent, at a high level it is as follows

January 25, 2011 Richard S. Hall

Understanding search order

● OSGi class loading search order is strict and
consistent, at a high level it is as follows
● Boot delegate java.* packages, fail if not found

January 25, 2011 Richard S. Hall

Understanding search order

● OSGi class loading search order is strict and
consistent, at a high level it is as follows
● Boot delegate java.* packages, fail if not found
● Delegate imported packages to exporter class

loaders, fail if not found

January 25, 2011 Richard S. Hall

Understanding search order

● OSGi class loading search order is strict and
consistent, at a high level it is as follows
● Boot delegate java.* packages, fail if not found
● Delegate imported packages to exporter class

loaders, fail if not found
● Search internal content, fail if not found

January 25, 2011 Richard S. Hall

Understanding search order

● Taking into account all OSGi features, it's a little more
complicated, but still strict and consistent

January 25, 2011 Richard S. Hall

Understanding search order

● Taking into account all OSGi features, it's a little more
complicated, but still strict and consistent
● Boot delegate java.* packages, fail if not found

January 25, 2011 Richard S. Hall

Understanding search order

● Taking into account all OSGi features, it's a little more
complicated, but still strict and consistent
● Boot delegate java.* packages, fail if not found
● Delegate imported packages to exporter class loaders, fail if

not found

January 25, 2011 Richard S. Hall

Understanding search order

● Taking into account all OSGi features, it's a little more
complicated, but still strict and consistent
● Boot delegate java.* packages, fail if not found
● Delegate imported packages to exporter class loaders, fail if

not found
● Delegate to required bundle class loaders, do not fail if not

found

January 25, 2011 Richard S. Hall

Understanding search order

● Taking into account all OSGi features, it's a little more
complicated, but still strict and consistent
● Boot delegate java.* packages, fail if not found
● Delegate imported packages to exporter class loaders, fail if

not found
● Delegate to required bundle class loaders, do not fail if not

found
● Search internal content, do not fail if not found

January 25, 2011 Richard S. Hall

Understanding search order

● Taking into account all OSGi features, it's a little more
complicated, but still strict and consistent
● Boot delegate java.* packages, fail if not found
● Delegate imported packages to exporter class loaders, fail if

not found
● Delegate to required bundle class loaders, do not fail if not

found
● Search internal content, do not fail if not found
● Attempt to dynamically import if package is not required or

exported, if successful
– Delegate to exporter class loader

– Treat as a normal import for subsequent load requests

January 25, 2011 Richard S. Hall

Understanding search order

● Taking into account all OSGi features, it's a little more
complicated, but still strict and consistent
● Boot delegate java.* packages, fail if not found
● Delegate imported packages to exporter class loaders, fail if

not found
● Delegate to required bundle class loaders, do not fail if not

found
● Search internal content, do not fail if not found
● Attempt to dynamically import if package is not required or

exported, if successful
– Delegate to exporter class loader

– Treat as a normal import for subsequent load requests

● Fail

January 25, 2011 Richard S. Hall

When things go wrong...

Unresolved constraints
● In Felix you might see something like this:

– org.osgi.framework.BundleException:
Unresolved constraint in bundle importer
[5]: Unable to resolve 5.0: missing
requirement [5.0] package;
(&(package=exporter)
(version>=1.0.0)(!(version>=2.0.0)))

January 25, 2011 Richard S. Hall

When things go wrong...

Unresolved constraints
● In Felix you might see something like this:

– org.osgi.framework.BundleException:
Unresolved constraint in bundle importer
[5]: Unable to resolve 5.0: missing
requirement [5.0] package;
(&(package=exporter)
(version>=1.0.0)(!(version>=2.0.0)))

Questions to ask yourself:
Is there a provider of the missing package?

January 25, 2011 Richard S. Hall

When things go wrong...

Unresolved constraints
● In Felix you might see something like this:

– org.osgi.framework.BundleException:
Unresolved constraint in bundle importer
[5]: Unable to resolve 5.0: missing
requirement [5.0] package;
(&(package=exporter)
(version>=1.0.0)(!(version>=2.0.0)))

Questions to ask yourself:
Do import attributes match the exported

package's attributes?

January 25, 2011 Richard S. Hall

When things go wrong...

Unresolved constraints
● It could also be a transitive dependency

– org.osgi.framework.BundleException:
Unresolved constraint in bundle importer
[5]: Unable to resolve 5.0: missing
requirement [5.0] package;
(&(package=exporter)(version>=1.0.0)(!
(version>=2.0.0))) [caused by: Unable to
resolve 6.0: missing requirement [6.0]
package; (&(package=transitive)
(version>=1.0.0))]

It complains about not being able to
resolve exporter package...

January 25, 2011 Richard S. Hall

When things go wrong...

Unresolved constraints
● It could also be a transitive dependency

– org.osgi.framework.BundleException:
Unresolved constraint in bundle importer
[5]: Unable to resolve 5.0: missing
requirement [5.0] package;
(&(package=exporter)(version>=1.0.0)(!
(version>=2.0.0))) [caused by: Unable to
resolve 6.0: missing requirement [6.0]
package; (&(package=transitive)
(version>=1.0.0))]

But actually, exporter was found,
but its provider has a dependency on
transitive that couldn't be satisfied.

January 25, 2011 Richard S. Hall

When things go wrong...

Constraint violations
● In Felix you might see something like this:

– org.osgi.framework.BundleException:
Constraint violation for package 'bar'
when resolving module 7.0 between existing
import 6.0.bar BLAMED ON [[7.0] package;
(&(package=bar)(version>=1.0.0)(!
(version>=2.0.0)))] and uses constraint
5.0.bar BLAMED ON [[7.0] package;
(&(package=exporter1.foo)(version>=1.0.0)
(!(version>=2.0.0)))]

January 25, 2011 Richard S. Hall

When things go wrong...

Constraint violations
● In Felix you might see something like this:

– org.osgi.framework.BundleException:
Constraint violation for package 'bar'
when resolving module 7.0 between existing
import 6.0.bar BLAMED ON [[7.0] package;
(&(package=bar)(version>=1.0.0)(!
(version>=2.0.0)))] and uses constraint
5.0.bar BLAMED ON [[7.0] package;
(&(package=exporter1.foo)(version>=1.0.0)
(!(version>=2.0.0)))]

Here, module 7.0 (aka bundle 7) is
exposed to two versions of package

bar from modules 5.0 and 6.0
(aka bundles 5 and 6).

January 25, 2011 Richard S. Hall

When things go wrong...

Constraint violations
● In Felix you might see something like this:

– org.osgi.framework.BundleException:
Constraint violation for package 'bar'
when resolving module 7.0 between existing
import 6.0.bar BLAMED ON [[7.0] package;
(&(package=bar)(version>=1.0.0)
(!(version>=2.0.0)))] and uses constraint
5.0.bar BLAMED ON [[7.0] package;
(&(package=exporter1.foo)(version>=1.0.0)
(!(version>=2.0.0)))]

Questions to ask yourself:
Are the involved bundles' import constraints

accurate/specific enough?

January 25, 2011 Richard S. Hall

When things go wrong...

Constraint violations
● In Felix you might see something like this:

– org.osgi.framework.BundleException:
Constraint violation for package 'bar'
when resolving module 7.0 between existing
import 6.0.bar BLAMED ON [[7.0] package;
(&(package=bar)(version>=1.0.0)
(!(version>=2.0.0)))] and uses constraint
5.0.bar BLAMED ON [[7.0] package;
(&(package=exporter1.foo)(version>=1.0.0)
(!(version>=2.0.0)))]

Questions to ask yourself:
Have you deployed unnecessary providers

of the conflicting package?

January 25, 2011 Richard S. Hall

When things go wrong...

Constraint violations
● In Felix you might see something like this:

– org.osgi.framework.BundleException:
Constraint violation for package 'bar'
when resolving module 7.0 between existing
import 6.0.bar BLAMED ON [[7.0] package;
(&(package=bar)(version>=1.0.0)
(!(version>=2.0.0)))] and uses constraint
5.0.bar BLAMED ON [[7.0] package;
(&(package=exporter1.foo)(version>=1.0.0)
(!(version>=2.0.0)))]

Questions to ask yourself:
Were dependencies resolved incrementally

(i.e., incremental bundle deployment)?

January 25, 2011 Richard S. Hall

When things go wrong...

Constraint violations
● It could also be a transitive constraint

– org.osgi.Framework.BundleException:
Constraint violation for package 'bar'
when resolving module 8.0 between existing
import 5.0.bar BLAMED ON [[8.0] package;
(&(package=bar)(version>=1.0.0)(!
(version>=2.0.0)))] and uses constraint
7.0.bar BLAMED ON [[8.0] package;
(&(package=exporter2.woz)(version>=1.0.0)
(!(version>=2.0.0))), [6.0] package;
(&(package=exporter3.boz)(version>=1.0.0)
(!(version>=2.0.0)))]

January 25, 2011 Richard S. Hall

When things go wrong...

Constraint violations
● It could also be a transitive constraint

– org.osgi.Framework.BundleException:
Constraint violation for package 'bar'
when resolving module 8.0 between existing
import 5.0.bar BLAMED ON [[8.0] package;
(&(package=bar)(version>=1.0.0)(!
(version>=2.0.0)))] and uses constraint
7.0.bar BLAMED ON [[8.0] package;
(&(package=exporter2.woz)(version>=1.0.0)
(!(version>=2.0.0))), [6.0] package;
(&(package=exporter3.boz)(version>=1.0.0)
(!(version>=2.0.0)))]

Then you need to investigate the most
deeply nested blamed requirement.

January 25, 2011 Richard S. Hall

When things go wrong...

Constraint violations
● It could also be a transitive constraint

– org.osgi.Framework.BundleException:
Constraint violation for package 'bar'
when resolving module 8.0 between existing
import 5.0.bar BLAMED ON [[8.0] package;
(&(package=bar)(version>=1.0.0)(!
(version>=2.0.0)))] and uses constraint
7.0.bar BLAMED ON [[8.0] package;
(&(package=exporter2.woz)(version>=1.0.0)
(!(version>=2.0.0))), [6.0] package;
(&(package=exporter3.boz)(version>=1.0.0)
(!(version>=2.0.0)))]

To clarify, this is the chain of imports that
led to the constraint violation.

January 25, 2011 Richard S. Hall

When things go wrong...

Constraint violations
● It could also be a transitive constraint

– org.osgi.Framework.BundleException:
Constraint violation for package 'bar'
when resolving module 8.0 between existing
import 5.0.bar BLAMED ON [[8.0] package;
(&(package=bar)(version>=1.0.0)(!
(version>=2.0.0)))] and uses constraint
7.0.bar BLAMED ON [[8.0] package;
(&(package=exporter2.woz)(version>=1.0.0)
(!(version>=2.0.0))), [6.0] package;
(&(package=exporter3.boz)(version>=1.0.0)
(!(version>=2.0.0)))]

So, here module 8.0 imports
exporter2.woz from module 6.0...

January 25, 2011 Richard S. Hall

When things go wrong...

Constraint violations
● It could also be a transitive constraint

– org.osgi.Framework.BundleException:
Constraint violation for package 'bar'
when resolving module 8.0 between existing
import 5.0.bar BLAMED ON [[8.0] package;
(&(package=bar)(version>=1.0.0)(!
(version>=2.0.0)))] and uses constraint
7.0.bar BLAMED ON [[8.0] package;
(&(package=exporter2.woz)(version>=1.0.0)
(!(version>=2.0.0))), [6.0] package;
(&(package=exporter3.boz)(version>=1.0.0)
(!(version>=2.0.0)))]

Who imports exporter3.boz from module 7.0,
which apparently has a “uses” contraint on bar.

January 25, 2011 Richard S. Hall

When things go wrong...

ClassNotFoundException
● In Felix you might see something like this:

– java.lang.ClassNotFoundException:
exporter.Exporter not found by importer [5]
at org.apache.felix.framework.
ModuleImpl.findClassOrResourceByDelegation(
ModuleImpl.java:787)
at org.apache.felix.framework.
ModuleImpl.access$400(ModuleImpl.java:71)
at org.apache.felix.framework.
ModuleImpl$ModuleClassLoader.loadClass(Modu
leImpl.java:1768)
... 36 more

January 25, 2011 Richard S. Hall

When things go wrong...

ClassNotFoundException
● In Felix you might see something like this:

– java.lang.ClassNotFoundException:
exporter.Exporter not found by importer [5]
at org.apache.felix.framework.
ModuleImpl.findClassOrResourceByDelegation(
ModuleImpl.java:787)
at org.apache.felix.framework.
ModuleImpl.access$400(ModuleImpl.java:71)
at org.apache.felix.framework.
ModuleImpl$ModuleClassLoader.loadClass(Modu
leImpl.java:1768)
... 36 moreQuestions to ask yourself:

Is the class in question supposed to be
in the bundle or imported?

January 25, 2011 Richard S. Hall

When things go wrong...

ClassNotFoundException
● In Felix you might see something like this:

– java.lang.ClassNotFoundException:
exporter.Exporter not found by importer [5]
at org.apache.felix.framework.
ModuleImpl.findClassOrResourceByDelegation(
ModuleImpl.java:787)
at org.apache.felix.framework.
ModuleImpl.access$400(ModuleImpl.java:71)
at org.apache.felix.framework.
ModuleImpl$ModuleClassLoader.loadClass(Modu
leImpl.java:1768)
... 36 moreQuestions to ask yourself:

If it's a bundle class, does the bundle
actually contain the class?

January 25, 2011 Richard S. Hall

When things go wrong...

ClassNotFoundException
● In Felix you might see something like this:

– java.lang.ClassNotFoundException:
exporter.Exporter not found by importer [5]
at org.apache.felix.framework.
ModuleImpl.findClassOrResourceByDelegation(
ModuleImpl.java:787)
at org.apache.felix.framework.
ModuleImpl.access$400(ModuleImpl.java:71)
at org.apache.felix.framework.
ModuleImpl$ModuleClassLoader.loadClass(Modu
leImpl.java:1768)
... 36 moreQuestions to ask yourself:

If it's an imported class, does the bundle
actually import the package?

January 25, 2011 Richard S. Hall

When things go wrong...

ClassNotFoundException
● In Felix you might see something like this:

– java.lang.ClassNotFoundException:
exporter.Exporter not found by importer [5]
at org.apache.felix.framework.
ModuleImpl.findClassOrResourceByDelegation(
ModuleImpl.java:787)
at org.apache.felix.framework.
ModuleImpl.access$400(ModuleImpl.java:71)
at org.apache.felix.framework.
ModuleImpl$ModuleClassLoader.loadClass(Modu
leImpl.java:1768)
... 36 moreQuestions to ask yourself:

If it does import the package, does the
exporting bundle actually contain the class?

January 25, 2011 Richard S. Hall

When things go wrong...

NoClassDefError
● In Felix you might see something like this:

– java.lang.NoClassDefFoundError:
exporter/Other
at exporter.Exporter.<init>(Exporter.java:7)
at importer.Importer.start(Importer.java:10)
at org.apache.felix.framework.util.
SecureAction.startActivator
(SecureAction.java:629)
at org.apache.felix.framework.Felix.
activateBundle(Felix.java:1827)
... 32 more

January 25, 2011 Richard S. Hall

When things go wrong...

NoClassDefError
● In Felix you might see something like this:

– java.lang.NoClassDefFoundError:
exporter/Other
at exporter.Exporter.<init>(Exporter.java:7)
at importer.Importer.start(Importer.java:10)
at org.apache.felix.framework.util.
SecureAction.startActivator
(SecureAction.java:629)
at org.apache.felix.framework.Felix.
activateBundle(Felix.java:1827)
... 32 more

Questions to ask yourself:
The same types of questions as with

class not found exceptions...

January 25, 2011 Richard S. Hall

When things go wrong...

NoClassDefError
● In Felix you might see something like this:

– java.lang.NoClassDefFoundError:
exporter/Other
at exporter.Exporter.<init>(Exporter.java:7)
at importer.Importer.start(Importer.java:10)
at org.apache.felix.framework.util.
SecureAction.startActivator
(SecureAction.java:629)
at org.apache.felix.framework.Felix.
activateBundle(Felix.java:1827)
... 32 more

The tricky part is that the class in question
is not directly relevant to you...

January 25, 2011 Richard S. Hall

When things go wrong...

NoClassDefError
● In Felix you might see something like this:

– java.lang.NoClassDefFoundError:
exporter/Other
at exporter.Exporter.<init>(Exporter.java:7)
at importer.Importer.start(Importer.java:10)
at org.apache.felix.framework.util.
SecureAction.startActivator
(SecureAction.java:629)
at org.apache.felix.framework.Felix.
activateBundle(Felix.java:1827)
... 32 moreHere, the Importer was creating

Exporter, but the failure is for
Other, which Importer might

know nothing about...

January 25, 2011 Richard S. Hall

When things go wrong...

NoClassDefError
● In Felix you might see something like this:

– java.lang.NoClassDefFoundError:
exporter/Other
at exporter.Exporter.<init>(Exporter.java:7)
at importer.Importer.start(Importer.java:10)
at org.apache.felix.framework.util.
SecureAction.startActivator
(SecureAction.java:629)
at org.apache.felix.framework.Felix.
activateBundle(Felix.java:1827)
... 32 more

This means means the issue is likely in
the bundle containing Exporter, not

the bundle containing Importer.

January 25, 2011 Richard S. Hall

Poking around

● Use the Gogo shell to see what's going on
● lb – to list installed bundles

● headers – to view a bundle's manifest main
headers

● inspect p[ackage] c[apability] – to view a
bundle's exported packages with wiring

● inspect p[ackage] r[equirement] – to view
a bundle's imported packages with wiring

● which – to try to load a class from a bundle and
see from where it comes

January 25, 2011 Richard S. Hall

How to load classes?

● Generally speaking
● Your modules should not need to explicitly load

classes
● Normal, on-demand, implicit class loading as your

code executes should be sufficient

January 25, 2011 Richard S. Hall

How to load classes?

● Generally speaking
● Your modules should not need to explicitly load

classes
● Normal, on-demand, implicit class loading as your

code executes should be sufficient

● But, what if this isn't sufficient?
● What if your code needs to dynamically load a

class?

January 25, 2011 Richard S. Hall

How to load classes?

● First things first
● Don't use Class.forName()

– The resulting class is cached in the defining AND the
initiating class loader

● Subsequent requests from the initiating class loader will always
return the same class, which is not usually what you want

● Inhibits garbage collection

● Yes, the JavaDocs tell you to use
Class.forName(), but still don't

– One of the main arguments for Class.forName() is
that it handles array types, but OSGi class loaders should
handle this too via ClassLoader.loadClass()

January 25, 2011 Richard S. Hall

How to load classes?

● If you are loading a class on behalf of a client,
some options are
● If the client provides a client-loaded object, then use

its class loader
● Allow the client to provide the needed class loader

as a parameter
● Require that the client set/unset the Thread Context

Class Loader before performing operation

January 25, 2011 Richard S. Hall

How to load classes?

● If no client is involved, then some options are
● If you know it will always be the same class at

execution time, you just don't know which one, use
dynamic imports
– e.g., maybe the class is set via a configuration property

● Search installed bundles and use
Bundle.loadClass()
– a la the extender pattern

January 25, 2011 Richard S. Hall

How to load classes?

● Another alternative, use services and the
service registry
● Provides a loosely-coupled collaboration

mechanism
● Can eliminate the need to deal directly with class

loaders
– Rather than looking for classes to instantiate, look for

instantiated service objects

January 25, 2011 Richard S. Hall

Conclusions

January 25, 2011 Richard S. Hall

Conclusions

● When using OSGi you must unlearn the global
type visibility assumption
● OSGi provides strict and explicit type visibility rules

to give control back to you

January 25, 2011 Richard S. Hall

Conclusions

● When using OSGi you must unlearn the global
type visibility assumption
● OSGi provides strict and explicit type visibility rules

to give control back to you

● If you change your mindset, then your code will
work well with (or without) OSGi...
● ...and then you can begin to ignore it

January 25, 2011 Richard S. Hall

If you want all the details...

Get this book - http://www.manning.com/hall/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126

