
6.2. Implementing a simple custom Interceptor
{scrollbar}

Implementing a simple custom Interceptor for ApacheDS
ApacheDS 1.5.5
This site was updated for ApacheDS 1.5.5.

The following is for developers who plan to implement their own interceptors in order to extend or modify the functionality of Apache Directory Server. It
contains a simple example as a starting point.

32list

What exactly is an interceptor?

An interceptor filters method calls performed on on the just like Servlet filters do. The ApacheDS configuration contains a chain of DefaultPartitionNexus
filters performing several tasks. In order to illustrate this, here is the list of interceptors from the default server configuration of ApacheDS 1.5.5

org.apache.directory.server.core.normalization.NormalizationInterceptor
org.apache.directory.server.core.authn.AuthenticationInterceptor
org.apache.directory.server.core.referral.ReferralInterceptor
org.apache.directory.server.core.authz.AciAuthorizationInterceptor
org.apache.directory.server.core.authz.DefaultAuthorizationInterceptor
org.apache.directory.server.core.exception.ExceptionInterceptor
org.apache.directory.server.core.changelog.ChangeLogInterceptor
org.apache.directory.server.core.operational.OperationalAttributeInterceptor
org.apache.directory.server.core.schema.SchemaInterceptor
org.apache.directory.server.core.subtree.SubentryInterceptor
org.apache.directory.server.core.collective.CollectiveAttributeInterceptor
org.apache.directory.server.core.event.EventInterceptor
org.apache.directory.server.core.trigger.TriggerInterceptor
org.apache.directory.server.core.journal.JournalInterceptor

Interceptors should usually pass the control of current invocation to the next interceptor by calling an appropriate method on . The flow NextInterceptor
control is returned when the next interceptor's filter method returns. You can therefore implement pre-, post-, around- invocation handler by how you place
the statement.

Interceptors are a powerful way to extend and modify the server behavior. But be warned. A mistakenly written interceptor may lead to a dis-functional or
corrupt server.

Password hash. A simple interceptor

In order to demonstrate how to write an interceptor, here is a simple but realistic example. The following requirement should be fulfilled by an interceptor.

No user password should be stored in the directory in clear text.

To be more concrete:

If a userpassword is set by an LDAP client in plain text, a should be applied to the value, and the one-way encrypted message digest algorithm
value should be stored
the algorithm should be applied if new entries are created or existing entries are modified (hence modify and add operations will be intercepted)
If the value given by the client is already provided in hashed form, nothing happens, and the given value is stored in the directory without
modification

The sources

Currently, the sources are checked in here

http://svn.apache.org/repos/asf/directory/sandbox/szoerner/passwordHashInterceptor

In order to build it, simply check it out and type "mvn install".

Implementing the class PasswordHashInterceptor

The following UML class diagram depicts the structure of the little example. Classes in white are given by Apache Directory Server as extension points.
The two gray classes comprise the example interceptor.

http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://svn.apache.org/repos/asf/directory/sandbox/szoerner/passwordHashInterceptor

The class contains two simple methods w.r.t. hashing. detects whether a value has already been hashed with a known HashTools isAlreadyHashed
message digest algorithm. applies a hash algorithm to a sequence of bytes. See the source code and the unit tests of this class for applyHashAlgorithm
details, it has not that much to do with the interceptor stuff.

The central class is . Every interceptor has to implement the interface from package PasswordHashInterceptor Interceptor org.apache.directory.server.core.
. does so by extended the convenience class from the same package.interceptor PasswordHashInterceptor BaseInterceptor

The property allows to configure the alhorithm used for hashing the passwords. It defaults to . The hashAlgorithm MD5 (Message-Digest algorithm 5)
property allows configuration of the attribute type which stores the user password. Its value will be hashed if needed. The property passwordAttributeName
defaults to "userPassword", which is quite common and used for instance in the object class.inetOrgPerson

The most interesting methods of the class are and . They intercept the requests ans modify the attribute values, if needed. See below the add modify
complete source code of the class.

java package org.apache.directory.samples.interceptor.pwdhash; import static org.apache.directory.samples.interceptor.pwdhash.HashTools.
applyHashAlgorithm; import static org.apache.directory.samples.interceptor.pwdhash.HashTools.isAlreadyHashed; import java.util.List; import org.apache.
directory.server.core.entry.ClonedServerEntry; import org.apache.directory.server.core.interceptor.BaseInterceptor; import org.apache.directory.server.
core.interceptor.NextInterceptor; import org.apache.directory.server.core.interceptor.context.AddOperationContext; import org.apache.directory.server.core.
interceptor.context.ModifyOperationContext; import org.apache.directory.shared.ldap.entry.EntryAttribute; import org.apache.directory.shared.ldap.entry.
Modification; import org.apache.directory.shared.ldap.entry.ModificationOperation; public class PasswordHashInterceptor extends BaseInterceptor {
private String hashAlgorithm = "MD5"; private String passwordAttributeName = "userPassword"; public void setHashAlgorithm(String hashAlgorithm) { this.
hashAlgorithm = hashAlgorithm; } public void setPasswordAttributeName(String passwordAttributeName) { this.passwordAttributeName =
passwordAttributeName; } /** * Intercepts the add operation in order to replace plain password values * with hashed ones. */ @Override public void add
(NextInterceptor next, AddOperationContext opContext) throws Exception { ClonedServerEntry entry = opContext.getEntry(); EntryAttribute attribute =
entry.get(passwordAttributeName); if (attribute != null) { hashPasswordIfNeccessary(attribute); } super.add(next, opContext); } /** * Intercepts the modify
operation in order to replace plain password values * with hashed ones. */ @Override public void modify(NextInterceptor next, ModifyOperationContext
opContext) throws Exception { List<Modification> items = opContext.getModItems(); for (Modification modification : items) { ModificationOperation
operation = modification.getOperation(); if (operation == ModificationOperation.ADD_ATTRIBUTE || operation == ModificationOperation.
REPLACE_ATTRIBUTE) { EntryAttribute attribute = modification.getAttribute(); if (attribute.getId().equalsIgnoreCase(passwordAttributeName)) {
hashPasswordIfNeccessary(attribute); } } } super.modify(next, opContext); } protected void hashPasswordIfNeccessary(EntryAttribute attribute) { try { byte[]
password = attribute.getBytes(); if (!isAlreadyHashed(password)) { byte[] hashed = applyHashAlgorithm(hashAlgorithm, password); attribute.clear();
attribute.add(hashed); } } catch (Exception e) { throw new RuntimeException("Password hash failed", e); } } }

Using the interceptor

http://en.wikipedia.org/wiki/MD5
http://www.ietf.org/rfc/rfc2798.txt

You may use a custom interceptor both in a standard ApacheDS installation and in a server started embedded.

Adding it to a standard server installation (server.xml)

In order to get the interceptor installed in a default installation of ApacheDS 1.5.5., just copy the jar-File resulting from the Maven build, which contains the
custom classes, to .APACHEDS_INSTALLDIR/lib/ext

After that, add the interceptor to the file in . Make sure to backup the file before your modifications. Within server.xml APACHEDS_INSTALLDIR/conf/ server
 find the XML elements which list the interceptors. The easiest way to add a custom interceptor is to add a spring bean (namespace "s"). You mya set .xml

configuration properties to the interceptor as well, if it supports some.

The following fragment shows the interceptor list with the example interceptor added just behind normalization. For demonstration purposes, the hash
algorithm is set to "MD5" (which is the default of our interceptor anyway).

xml ... <interceptors> <normalizationInterceptor/> <s:bean class="org.apache.directory.samples.interceptor.pwdhash.PasswordHashInterceptor"> <s:
property name="hashAlgorithm" value="MD5" /> </s:bean> <authenticationInterceptor/> <referralInterceptor/> <aciAuthorizationInterceptor/>
<defaultAuthorizationInterceptor/> <exceptionInterceptor/> <operationalAttributeInterceptor/> ... </interceptors> ...

Embedded mode

As an alternative, the following Java code starts an ApacheDS embedded in a main method. The list of interceptors is complemented with the example
interceptor. We insert it exactly behind the (the position is a little bit tricky to determine).NormalizingInterceptor

java package org.apache.directory.samples.interceptor.pwdhash; import java.util.List; import org.apache.directory.server.core.DefaultDirectoryService;
import org.apache.directory.server.core.DirectoryService; import org.apache.directory.server.core.interceptor.Interceptor; import org.apache.directory.
server.core.normalization.NormalizationInterceptor; import org.apache.directory.server.ldap.LdapServer; import org.apache.directory.server.protocol.
shared.transport.TcpTransport; /** * Main class which starts an embedded server with the interceptor inserted into * the chain. */ public class Main { public
static void main(String[] args) throws Exception { DirectoryService directoryService = new DefaultDirectoryService(); directoryService.
setShutdownHookEnabled(true); List<Interceptor> interceptors = directoryService.getInterceptors(); // Find Normalization interceptor in chain int
insertionPosition = -1; for (int pos = 0; pos < interceptors.size(); ++pos) { Interceptor interceptor = interceptors.get(pos); if (interceptor instanceof
NormalizationInterceptor) { insertionPosition = pos; } } // insert our new interceptor just behind interceptors.add(insertionPosition + 1, new
PasswordHashInterceptor()); directoryService.setInterceptors(interceptors); LdapServer ldapServer = new LdapServer(); ldapServer.setDirectoryService
(directoryService); ldapServer.setAllowAnonymousAccess(true); TcpTransport ldapTransport = new TcpTransport(10389); ldapServer.setTransports
(ldapTransport); directoryService.startup(); ldapServer.start(); } }

Verification

Let's check whether our new interceptor does its job! In order to do so, we use Apache Directory Studio and connect to the server with the interceptor
enabled (see above).

First we create a new entry with the following data, using "New Entry ..." within Studio.

dn: cn=Kate Bush,ou=users,ou=system objectClass: person objectClass: top cn: Kate Bush sn: Bush

Then we add a new attribute in the entry editor. For the value, a special editor appears:userPassword

Select "Plaintext" as the hash method and enter a new password. We selected "secret" (see screen shot above). After pressing OK, a modify operation is
sent to the server, which will be intercepted by our example class.

After that, the value for is not "secret", but the MD5 digested value of it.userPassword

The user Kate Bush is still capable of authenticating with the password "secret", because Apache Directory Server supports authentication with passwords
hashed with this algorithm. You can verify this by connecting with Studio and the using "cn=Kate Bush,ou=users,ou=system" as bind DN.

Here it is demonstrated with the help of the command line tool. The result also shows that the value is hashed with MD5.ldapsearch userPassword

$ ldapsearch -h localhost -p 10389 -D "cn=Kate Bush,ou=users,ou=system" \\ -w secret -b "ou=users,ou=system" -s one "(objectClass=*)" version: 1 dn:
cn=Kate Bush,ou=users,ou=system objectClass: person objectClass: top cn: Kate Bush sn: Bush userPassword: {MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ== $

Limitations of the example

This example is intended as a demonstration, on how to write your custom interceptor. Don't consider it bullet proof. It has not been tested under
production conditions, etc.

At least the following limitation should be mentioned

The default hash algorithm MD5 is considered weak.
Exception handling is poor. E.g. if someone configures an unsupported hash algorithm, the interceptor fails to create an appropriate LDAP error.
If a multivalued password attribute is used, the interceptor will simply ignore that fact (does not apply to userPassword as of RFC 2256).

Further reading

Learn more about interceptors in , check out the source code of some implementations of the interface, ApacheDS Architecture Documentation Interceptor
and/or read the javadoc comments.

https://cwiki.apache.org/confluence/display/DIRxSRVx11/1.2.+Interceptors

	6.2. Implementing a simple custom Interceptor

