
8. Intermediate - How to write my own binding component
{scrollbar}

How to write my own binding component
ATTENTION!

 This tutorial page is a work in progress and therefore NOT finished. So check back later for updates.

Prerequisites

Maven 2.0.7 or higher
If you have never used Maven previously the Maven  explains some valuable concepts surrounding MavenGetting Started Guide

ServiceMix 3.2.1 or higher
A broadband internet connection so Maven can automatically download dependencies

General

This tutorial will explain to you how to write your own binding components. What you learn here is also enabling you to write own service engines because 
the difference between a binding component and a service engine is of pure logical nature. While a binding component is translating data from outside bus 
to normalized messages used inside the bus and vice versa a service engine is only working inside the bus with normalized messages.

Should I really create my own binding component?

Before beginning this tutorial, please take the time to read the FAQ entry titled " ". It is very important that you Should I Create My Own JBI Components?
understand the reason for developing a JBI binding component and this FAQ entry will explain this to you.

A very brief introduction to Java Business Integration ( )JBI

The  provides a standards-based, service-oriented approach to application integration through the use of an abstract Java Business Integration (JBI) spec
messaging model, without reference to a particular protocol or wire encoding. JBI introduces the concepts of Binding Components (BCs), Service Engines 
(SEs) to Service Units (SUs) and Service Assemblies (SAs) to define an architecture for vendor-neutral pluggable components. The purpose of this 
architecture is to provide standards-based interoperability amongst components/services.

JBI components can be thought of as the  or  accessible in a service-oriented architecture. Each service has a very specific smallest applications services
purpose and therefore a narrow scope and set of functionality. Components come in two flavors:

Service Engines ( )SE
Binding Components ( ).BC

SU*s must be packaged into a *SA to be deployed to the JBI container. A  is a  consisting of one or more services. By SA complete application
comparison, this is similar to the way that WAR files must be packaged inside of an EAR file to be deployed to a J2EE container.

See also the page providing information on working with service units

Below some quick definitions which are dominant throughout the  spec:JBI

Component Architecture
Binding Components - Components that provide or consume services via some sort of communications protocol or other remoting 
technology
Service Engines - Components that supply or consume services locally (within the JBI container)

The difference between binding components (*BC*s) and service engines (*SE*s) is definitely subtle and is not denoted by the JBI APIs. In fact, the only 
real true difference between the two is in the  descriptor in the packaging. What it really boils down to is the fact that *BC*s are used to do jbi.xml
integration with a service outside the bus and *SE*s are services that are deployed to and solely contained within the bus. Hopefully the JBI 2.0 spec will 
provide more distinction.

Component Packaging
Service Units - Packaging for an individual service that allows deployment to the JBI container; similar to a WAR file from J2EE
Service Assemblies - Packaging for groups of *SU*s for deployment to the JBI container; similar to an EAR file from J2EE

This tutorial focuses on both component architecture and component packaging. For further information and details on JBI, see the following:

The JBI spec
The  section of the JBI User's Guide
The  articleJBIforSOI

http://maven.apache.org/guides/getting-started/index.html
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=54624
http://jcp.org/en/jsr/detail?id=208
http://servicemix.apache.org/working-with-service-units.html
http://jcp.org/en/jsr/detail?id=208
https://cwiki.apache.org/confluence/display/SM/5.+JBI
https://cwiki.apache.org/confluence/display/SM/User%27s+Guide
https://open-esb.dev.java.net/public/whitepapers/JBIforSOI.pdf


The  JavaWorld articleServiceMix as an enterprise service bus

Getting started with a BC

This tutorial will explain to you how to create a binding component for the SNMP protocol. If you don't know what this protocol is about, then see for 
example the  Wikipedia entry for further details. As a first step we will only create a snmp polling service. Once you understand how to do this, you SNMP
will be able to go further and create also a sender service but this will be not done inside this tutorial for now.

Now let's move on to creating the Maven projects for the SNMP binding component.

Creating a Maven project for the JBI BC

The focus of this section is on the creation of a JBI binding component. For this task, a  will be used to create a Maven project skeleton to Maven archetype
house the component. Maven archetypes are templates for Maven projects that jumpstart project creation via the automation of repetitive tasks by 
following standard conventions. The result of using an archetype to create a Maven project is a directory structure, a  file and, depending on Maven POM
the archetype being used, sometimes Java objects and JUnit tests.

Below are the steps to follow for creating the directory structure and project. All instructions are laid out to take place on a Unix command-line.

1) Create a Maven project named  and switch to that directory:servicemix-snmp

$ mvn archetype:create \ -DarchetypeGroupId=org.apache.servicemix.tooling \ -DarchetypeArtifactId=servicemix-project-root \ -DarchetypeVersion=3.2.2 \ -
DgroupId=org.apache.servicemix.tutorial.snmp \ -DartifactId=servicemix-snmp-tutorial $ cd servicemix-snmp-tutorial

2. Check the project Maven configuration file

Maven created a project folder for you and already setup a project file called pom.xml. As this is not a beginner tutorial I won't explain the file here.
Open up the  file in your favorite editor and look at the content if everything is like you want it to be.pom.xml

$ nano pom.xml

You will recognize, that the project file is setup for your purposes already. You normally don't need to change anything in there for the moment.

3) Create the binding component sub project

Use the  Maven archetype to generate a Maven project for the component.servicemix-binding-component

To create the BC, execute the following command on the command-line:

$ mvn archetype:create \ -DarchetypeGroupId=org.apache.servicemix.tooling \ -DarchetypeArtifactId=servicemix-binding-component \ -
DarchetypeVersion=3.2.2 \ -DgroupId=org.apache.servicemix.tutorial.snmp \ -DartifactId=snmp-binding

The command above will create a directory named  that houses a Maven project for the JBI binding component being created here. The snmp-binding
name of the directory is taken from the  parameter.artifactId

Now switch into the snmp-binding sub folder and open the pom.xml in your editor of choice. We will cleanup the file before proceeding to program code.

Do the following things:

we already defined repositories in project root pom, so you can safely discard the repository entries in the BC's pom.xml
fill in a proper name for the binding component in the name tag

ToDo-List

when to create a binding component?
outline the different jbi packaging units (bc, se, su, sa)
construct a real use case for the bc (for example a snmp poll service for grabbing snmp values of a network device like printer)
start by setting up the folder structure and the root pom -> watch out for not working maven:create and the incomplete BC archetype
define as much as possible inside the root pom (maybe done when the SU is created)
create the binding component
describe the pom content
detailed description of the key concepts
describe the base classes of the new bc and their role
a note on the annotations which control the elements in the su's xbean.xml
a note on different MEPs to support (or not)
doing a consumer endpoint (poller)
doing a test case for the bc
testing the bc
creating a service unit for the bc
describe how to configure the pom.xml
describe how to setup the xbean.xml
create the service assembly
configure the sa to package the su
deployment of the sa -> bc is still missing -> describe dependency resolving mechanism
deployment of the bc -> see the SA now deploying
see result of the polling in console window
for experienced users:

http://www.javaworld.com/javaworld/jw-12-2005/jw-1212-esb.html
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://maven.apache.org/guides/introduction/introduction-to-archetypes.html
http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
http://svn.apache.org/viewvc/servicemix/archetypes/trunk/servicemix-binding-component/


doing a provider endpoint (left over for the experienced reader to implement)
describe marshaler logic as it is used in nearly every SE / BC of smx
implement a marshaler (for more experienced readers, this will also affect the BC to provide such possibility)
add a file-sender to write snmp poll results to a file and wire it to the snmp poller
deployment and testing
give links etc. for further reading and for looking at other BC's code (snippets)

An overview of INLINE

using Maven-based tooling and archetypes to develop a snmp binding component

Goals of the document

This tutorial provides an easy and convenient way for a new user to learn about:

using Maven to develop JBI binding components
using Maven to develop JBI service units and service assemblies
using Maven to create Eclipse projects
using xbean.xml files to configure routes and services in ServiceMix
writing your own binding component

After finishing this tutorial you have a snmp binding component ready to poll devices. Feel free to play around with it and adding improvements.

Contents
true

Start this tutorial

{scrollbar}

#

	8. Intermediate - How to write my own binding component

