
File2

File Component

The File component provides access to file systems, allowing files to be processed by any other Camel or messages from other components Components
to be saved to disk.

URI format
file:directoryName[?options]

or

file://directoryName[?options]

Where represents the underlying file directory.directoryName

You can append query options to the URI in the following format, ?option=value&option=value&...

Only directories
Camel supports only endpoints configured with a starting directory. So the must be a directory. If you want to consume a single file only, directoryName
you can use the option e.g., by setting . Also, the starting directory must not contain dynamic expressions with fileName fileName=thefilename ${}
placeholders. Again use the option to specify the dynamic part of the filename.fileName
Avoid reading files currently being written by another application
Beware the JDK File IO API is a bit limited in detecting whether another application is currently writing/copying a file. And the implementation can be
different depending on OS platform as well. This could lead to that Camel thinks the file is not locked by another process and start consuming it. Therefore
you have to do you own investigation what suites your environment. To help with this Camel provides different options and readLock doneFileName
option that you can use. See also the section .Consuming files from folders where others drop files directly

URI Options

Common
confluenceTableSmall

Name Default
Value

Description

autoCr
eate

true Automatically create missing directories in the file's path name. For the file consumer, that means creating the starting directory.
For the file producer, it means the directory the files should be written to.

buffer
Size

128kb Write buffer sized in bytes.

fileNa
me

null Use such as to dynamically set the filename. For consumers, it's used as a filename filter. For Expression File Language
producers, it's used to evaluate the filename to write. If an expression is set, it take precedence over the CamelFileName
header. (The header itself can also be an). The expression options support both and Note: Expression String Expression
types. If the expression is a type, it is evaluated using the . If the expression is an String always File Language Expression
type, the specified type is used - this allows you, for instance, to use expressions.Expression OGNL

For the consumer, you can use it to filter filenames, so you can for instance consume today's file using the File Language
syntax: . From onward the producers support the mydata-${date:now:yyyyMMdd}.txt Camel 2.11 CamelOverruleFileN

 header which takes precedence over any existing header; the is a header ame CamelFileName CamelOverruleFileName
that is used only once, and makes it easier as this avoids to temporary store and have to restore it afterwards.CamelFileName

flatten false Flatten is used to flatten the file name path to strip any leading paths, so it's just the file name. This allows you to consume
recursively into sub-directories, but when you eg write the files to another directory they will be written in a single directory.
Setting this to on the producer enforces that any file name received in header will be stripped for any true CamelFileName
leading paths.

charset null Camel 2.9.3: this option is used to specify the encoding of the file. You can use this on the consumer, to specify the encodings
of the files, which allow Camel to know the charset it should load the file content in case the file content is being accessed.
Likewise when writing a file, you can use this option to specify which charset to write the file as well. See further below for a
examples and more important details.

copyAn
dDelet
eOnRen
ameFail

true Camel 2.9: whether to fallback and do a copy and delete file, in case the file could not be renamed directly. This option is not
available for the component.FTP

rename
UsingC
opy

false Camel 2.13.1: Perform rename operations using a copy and delete strategy. This is primarily used in environments where the
regular rename operation is unreliable e.g., across different file systems or networks. This option takes precedence over the cop

 parameter that will automatically fall back to the copy and delete strategy, but only after additional yAndDeleteOnRenameFail
delays.

Consumer

https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/FTP2

confluenceTableSmall

Name Default
Value

Description

initia
lDelay

1000 Milliseconds before polling the file/directory starts.

delay 500 Milliseconds before the next poll of the file/directory.

useFix
edDelay

 Controls if fixed delay or fixed rate is used. See in JDK for details.ScheduledExecutorService

In or older the default value is Camel 2.7.x .false

From onward the default value is Camel 2.8 .true

runLog
gingLe
vel

TRACE Camel 2.8: The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for
that.

recurs
ive

false If a directory, will look for files in all the sub-directories as well.

delete false If , the file will be deleted it is processed successfully.true after

noop false If , the file is not moved or deleted in any way. This option is good for readonly data, or for type requirements. If true ETL noop=
, Camel will set as well, to avoid consuming the same files over and over again.true idempotent=true

preMove null Expression (such as) used to dynamically set the filename when moving it processing. For example to File Language before
move in-progress files into the directory set this value to .order order

move .camel Expression (such as) used to dynamically set the filename when moving it processing. To move files into a File Language after .
 subdirectory just enter .done .done

moveFa
iled

null Expression (such as) used to dynamically set a different target directory when moving files processing File Language in case of
(configured via defined above) failed.move

For example, to move files into a subdirectory use: ..error .error

Note: When moving the files to the “fail” location Camel will the error and will not pick up the file again.handle

include null Is used to include files, if filename matches the regex pattern (matching is case in-sensitive from Camel 2.17 onward).

exclude null Is used to exclude files, if filename matches the regex pattern (matching is case in-sensitive from Camel onward).2.17

antInc
lude

null Camel 2.10: Ant style filter inclusion, for example . Multiple inclusions may be specified in comma-antInclude=*/.txt
delimited format. See for more details about ant path filters.below

antExc
lude

null Camel 2.10: Ant style filter exclusion. If both and are used, takes precedence over antInclude antExclude antExclude an
. Multiple exclusions may be specified in comma-delimited format. See for more details about ant path filters.tInclude below

antFil
terCas
eSensi
tive

true Camel 2.11: Ant style filter which is case sensitive or not.

idempo
tent

false Option to use the EIP pattern to let Camel skip already processed files. Will by default use a memory Idempotent Consumer
based LRUCache that holds 1000 entries. If then idempotent will be enabled as well to avoid consuming the same noop=true
files over and over again.

idempo
tentKey

Express
ion

Camel 2.11: To use a custom idempotent key. By default the absolute path of the file is used. You can use the , File Language
for example to use the file name and file size, you can do:

idempotentKey=${file:name}-${file:size}

idempo
tentRe
posito
ry

null A pluggable repository which by default use org.apache.camel.spi.IdempotentRepository MemoryMessageIdReposi
 if none is specified and is tory idempotent .true

inProg
ressRe
posito
ry

memory A pluggable in-progress repository . The in-progress repository is used org.apache.camel.spi.IdempotentRepository
to account the current in progress files being consumed. By default a memory based repository is used.

filter null Pluggable filter as a class. Will skip files if filter returns org.apache.camel.component.file.GenericFileFilter false
in its method. More details in section below.accept()

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
https://cwiki.apache.org/confluence/display/CAMEL/ETL
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html

filter
Direct
ory

null Camel 2.18: Filters the directory based on language. For example to filter on current date, you can use a simple date Simple
pattern such as }.${date:now:yyyMMdd

filter
File

null Camel 2.18: Filters the file based on language. For example to filter on file size, you can use .Simple ${file}:size > 5000

shuffle false Camel 2.16: To shuffle the list of files (sort in random order).

sorter null Pluggable sorter as a class.java.util.Comparator<org.apache.camel.component.file.GenericFile>

sortBy null Built-in sort using the . Supports nested sorts, so you can have a sort by file name and as a 2nd group sort by File Language
modified date. See sorting section below for details.

readLo
ck

none Used by consumer, to only poll the files if it has exclusive read-lock on the file e.g., the file is not in-progress or being written.
Camel will wait until the file lock is granted.

This option provides the built-in strategies:

none is for no read locks at all.
markerFile Camel creates a marker file and then holds a lock on it. This option is fileName.camelLock not available

for the FTP component.
changed is using file length/modification timestamp to detect whether the file is currently being copied or not. Will at least
use 1 sec. to determine this, so this option cannot consume files as fast as the others, but can be more reliable as the JDK
IO API cannot always determine whether a file is currently being used by another process. The option readLockCheckInt

 can be used to set the check frequency. This option is avail for the component from onward. erval only FTP Camel 2.8
Note: from onward the option can be enabled to speedup this strategy, Camel 2.10.1 FTP fastExistsCheck readLock
if the FTP server support the LIST operation with a full file name (some servers may not).
fileLock is for using . This option is avail for the component. This approach java.nio.channels.FileLock not FTP
should be avoided when accessing a remote file system via a mount/share unless that file system supports distributed file
locks.
rename is for using a try to rename the file as a test if we can get exclusive read-lock.
idempotent (only file component) is for using a as the read-lock. This allows to Camel 2.16 idempotentRepository

use read locks that supports clustering if the idempotent repository implementation supports that.
idempotent-changed (only file component) is for using a and changed as Camel 2.19 idempotentRepository
combined read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation
supports that.
idempotent-rename (only file component) is for using a and rename as Camel 2.19 idempotentRepository
combined read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation
supports that.

Warning: most of the read lock strategies are not suitable for use in clustered mode. That is, you cannot have multiple
consumers attempting to read the same file in the same directory. In this case, the read locks will not function reliably. The
idempotent read lock supports clustered reliably if you use a cluster aware idempotent repository implementation such as from H

 or .azelcast Component Infinispan

readLo
ckTime
out

10000 Optional timeout in milliseconds for the , if supported. If the read-lock could not be granted and the timeout triggered, readLock
then Camel will skip the file. At next poll Camel, will try the file again, and this time maybe the read-lock could be granted. Use a
value of or lower to indicate forever. In the default value is . Starting with the default value is . 0 Camel 2.0 0 Camel 2.1 10000
Currently and support the timeout., fileLock changed rename

Note: for the default value is instead of . The value must be higher FTP readLockTimeout 20000 10000 readLockTimeout
than , but a rule of thumb is to have a timeout that is at least 2 or more times higher than the readLockCheckInterval readL

. This is needed to ensure that ample time is allowed for the read lock process to try to grab the lock ockCheckInterval
before the timeout was hit.

readLo
ckChec
kInter
val

1000 Camel 2.6: Interval in milliseconds for the read-lock, if supported by the read lock. This interval is used for sleeping between
attempts to acquire the read lock. For example when using the read lock, you can set a higher interval period to cater changed
for . The default of 1 sec. may be if the producer is very slow writing the file. For the default slow writes too fast FTP readLockCh

 is . eckInterval 5000 The value must be higher than , but a rule of thumb is readLockTimeout readLockCheckInterval
to have a timeout that is at least 2 or more times higher than the . This is needed to ensure that readLockCheckInterval
ample time is allowed for the read lock process to try to grab the lock before the timeout was hit.

readLo
ckMinL
ength

1 Camel 2.10.1: This option applied only for . This option allows you to configure a minimum file length. By readLock=changed
default Camel expects the file to contain data, and thus the default value is . You can set this option to zero, to allow 1
consuming zero-length files.

readLo
ckMinA
ge

0 Camel 2.15: This option applies only to . This option allows you to specify a minimum age a file must be readLock=change
before attempting to acquire the read lock. For example, use to require that the file is at least 5 readLockMinAge=300s
minutes old. This can speedup the poll when the file is old enough as it will acquire the read lock immediately. Notice for FTP:
file timestamps reported by FTP servers are often reported with resolution of minutes, so parameter should readLockMinAge
be defined in minutes, e.g. for 1 minute. Notice that Camel supports specifying this as , or , etc.60000 60s 1m

https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/Hazelcast+Component
https://cwiki.apache.org/confluence/display/CAMEL/Hazelcast+Component
https://cwiki.apache.org/confluence/display/CAMEL/Infinispan
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP2

readLo
ckLogg
ingLev
el

WARN Camel 2.12: Logging level used when a read lock could not be acquired. By default a is logged. You can change this WARN
level, for example to OFF to not have any logging.

This option is only applicable for the types:readLock

changed
fileLock
rename

readLo
ckMark
erFile

true Camel 2.14: Whether to use marker file with the , or read lock types. By default a marker file is , changed rename exclusive
used as well to guard against other processes picking up the same files. This behavior can be turned off by setting this option to

. For example if you do not want to write marker files to the file systems by the Camel application.false

readLo
ckRemo
veOnRo
llback

true Camel 2.16: This option applied only for . This option allows to specify whether to remove the file readLock=idempotent
name entry from the idempotent repository when processing the file failed and a rollback happens. If this option is false, then the
file name entry is confirmed (as if the file did a commit).

readLoc
kRemov
eOnCo
mmit

false Camel 2.16: This option applied only for . This option allows to specify whether to remove the file readLock=idempotent
name entry from the idempotent repository when processing the file succeeded and a commit happens. By default the file is not
removed which ensures that any race-condition do not occur so another active node may attempt to grab the file. Instead the
idempotent repository may support eviction strategies that you can configure to evict the file name entry after X minutes - this
ensures no problems with race conditions.

readLo
ckDele
teOrph
anLock
Files

true Camel 2.16: Whether or not read lock with marker files should upon startup delete any orphan read lock files, which may have
been left on the file system, if Camel was not properly shutdown (such as a JVM crash). If turning this option to false then any
orphaned lock file will cause Camel to not attempt to pickup that file, this could also be due another node is concurrently reading
files from the same shared directory.

direct
oryMus
tExist

false Camel 2.5: Similar to but this applies during polling recursive sub directories.startingDirectoryMustExist

doneFi
leName

null Camel 2.6: If provided, Camel will only consume files if a file exists. This option configures what file name to use. Either done
you can specify a fixed name. Or you can use dynamic placeholders. The file is expected in the same folder as the done always
original file. See and sections for examples.using done file writing done file

exclus
iveRea
dLockS
trategy

null Pluggable read-lock as a org.apache.camel.component.file.GenericFileExclusiveReadLockStrategy
implementation.

maxMes
sagesP
erPoll

0 An integer to define a maximum messages to gather per poll. By default no maximum is set. Can be used to set a limit of e.g. 10
 to avoid when starting up the server that there are thousands of files. Set a value of or negative to disable it. See more 00 0

details at .Batch Consumer

Notice: If this option is in use then the and components will limit any sorting. For example if you have 100000 File FTP before
files and use , then only the first 500 files will be picked up, and then sorted. You can use the maxMessagesPerPoll=500 eage

 option and set this to to allow to scan all files first and then sort afterwards.rMaxMessagesPerPoll false

eagerM
axMess
agesPe
rPoll

true Camel 2.9.3: Allows for controlling whether the limit from is eager or not. If eager then the limit is maxMessagesPerPoll
during the scanning of files. Where as would scan all files, and then perform sorting. Setting this option to allows false false
for sorting all files first, and then limit the poll. Mind that this requires a higher memory usage as all file details are in memory to
perform the sorting.

minDep
th

0 Camel 2.8: The minimum depth to start processing when recursively processing a directory. Using means the minDepth=1
base directory. Using means the first sub directory.minDepth=2

This option is supported by consumer from onward.FTP Camel 2.8.2, 2.9

maxDep
th

Integer
.
MAX_VAL
UE

Camel 2.8: The maximum depth to traverse when recursively processing a directory. This option is supported by consumer FTP
from onward.Camel 2.8.2, 2.9

proces
sStrat
egy

null A pluggable allowing you to implement your own org.apache.camel.component.file.GenericFileProcessStrategy
 option or similar. Can also be used when special conditions must be met before a file can be consumed, such as a readLock

special file exists. If this option is set then the option does not apply.ready readLock

starti
ngDire
ctoryM
ustExi
st

false Camel 2.5: Whether the starting directory must exist. Mind that the option is default enabled, which means the autoCreate
starting directory is normally auto created if it doesn't exist. You can disable and enable this to ensure the starting autoCreate
directory must exist. Will thrown an exception if the directory doesn't exist.

https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/FTP2

pollSt
rategy

null A pluggable allowing you to provide your custom org.apache.camel.spi.PollingConsumerPollStrategy
implementation to control error handling that may occur during the operation but an has been created poll before Exchange
and routed by Camel. In other words the error occurred while the polling was gathering information e.g., access to a file network
failed so Camel cannot access it to scan for files.

The default implementation will log the caused exception at level and ignore it.WARN

sendEm
ptyMes
sageWh
enIdle

false Camel 2.9: If the polling consumer did not poll any files, you can enable this option to send an empty message (no body)
instead.

consum
er.
bridge
ErrorH
andler

false Camel 2.10: Allows for bridging the consumer to the Camel routing , which mean any exceptions occurred while Error Handler
trying to pickup files, or the likes, will now be processed as a message and handled by the routing . By default the Error Handler
consumer will use the to deal with exceptions, that by default will be logged at org.apache.camel.spi.ExceptionHandler

/ level and ignored. See the following section for more details: WARN ERROR How to use the Camel error handler to deal with
.exceptions triggered outside the routing engine

schedu
ledExe
cutorS
ervice

null Camel 2.10: Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own
single threaded thread pool. This option allows you to share a thread pool among multiple file consumers.

schedu
ler

null Camel 2.12: To use a custom scheduler to trigger the consumer to run. See more details at , for example Polling Consumer
there is a , and based scheduler that supports CRON expressions.Quartz2 Spring

backof
fMulti
plier

0 Camel 2.12: To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The
multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is
in use then and/or must also be configured.backoffIdleThreshold backoffErrorThreshold

For more details see: .Polling Consumer

backof
fIdleT
hresho
ld

0 Camel 2.12: The number of subsequent idle polls that should happen before the should kick-in.backoffMultipler

backof
fError
Thresh
old

0 Camel 2.12: The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler
should kick-in.

onComp
letion
Except
ionHan
dler

 Camel 2.16: To use a custom to handle any thrown exceptions that happens org.apache.camel.spi.ExceptionHandler
during the file on completion process where the consumer does either a commit or rollback. The default implementation will log
any exception at level and ignore.WARN

probeC
ontent
Type

false Camel 2.17: Whether to enable probing of the content type. If enable then the consumer uses (Files#probeContentType ja
 to determine the content-type of the file, and store that as a header with key)va.nio.file.Path Exchange#FILE_CONTENT

 on the Message._TYPE

Camel 2.15- the default is true.2.16.x

extende
dAttribu
tes

null Camel 2.17: To enable gathering extended file attributes through classes using java.nio.file.attribute Files.
 or getAttribute(ava.nio.file.Path, java.lang.String attribute) Files.readAttributes(ava.nio.

 depending on the option value. This option supports a comma delimited file.Path, java.lang.String attributes)
list of attributes to collect e.g., , or simple wildcard e.g., . If the attribute name basic:creationTime posix:group posix:*
is not prefixed, the basic attributes are queried. The result is stored as a header with key CamelFileExtendedAttributes
and it is of type where the key is the name of the attribute e.g., and the value is the Map<String, Object> posix:group
attributed returned by the call to or .Files.getAttribute() Files.readAttributes

Default behavior for file consumer

By default the file is locked for the duration of the processing.not
After the route has completed, files are moved into the subdirectory, so that they appear to be deleted. .camel
The File Consumer will always skip any file whose name starts with a dot, such as , , or . .camel .m2 ..groovy
Only files (not directories) are matched for valid filename, if options such as: or are used.include exclude

Producer
confluenceTableSmall

Name Default
Value

Description

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Quartz2
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer

fileEx
ist

Override What to do if a file already exists with the same name. The following values can be specified:

Override replaces the existing file.
Append adds content to the existing file.
Fail throws a indicating that there is already an existing file. GenericFileOperationException
Ignore silently ignores the problem and override the existing file, but assumes everything is okay.does not
Move (onward) requires that the option be configured as well. The Camel 2.10.1 moveExisting eagerDeleteTargetFi

 can be used to control what to do if moving the file, and there already exists a file, otherwise causing the move le
operation to fail. The option will move any existing files, before writing the target file. Move

 (Camel 2.11.1TryRename onward) is only applicable if option is in use. This allows to try renaming the tempFileName
file from the temporary name to the actual name, without doing any exists check. This check may be faster on some file
systems and especially FTP servers.

tempPr
efix

null This option is used to write the file using a temporary name and then, after the write is complete, rename it to the real name.
Can be used to identify files being written to and also avoid consumers (not using exclusive read locks) reading in progress files.
Is often used by when uploading big files.FTP

tempFi
leName

null Camel 2.1: The as option but offering a more fine grained control on the naming of the temporary filename same tempPrefix
as it uses the .File Language

moveEx
isting

null Camel 2.10.1: (such as) used to compute file name to use when is configured. To Expression File Language fileExist=Move
move files into a subdirectory just enter .backup backup

This option only supports the following tokens:File Language

file:name
file:name.ext
file:name.noext
file:onlyname
file:onlyname.noext
file:ext
file:parent

Note: the token is not supported by the component which can only move files to a directory relative to the file:parent FTP cu
 directory.rrent

keepLa
stModi
fied

false Camel 2.2: Will keep the last modified timestamp from the source file (if any). Will use the Exchange.FILE_LAST_MODIFIED
header to located the timestamp. This header can contain either a or with the timestamp. If the java.util.Date long
timestamp exists and the option is enabled it will set this timestamp on the written file.

Note: This option only applies to the producer. It be used with any of the FTP producers.file cannot

eagerD
eleteT
argetF
ile

true Camel 2.3: Whether or not to eagerly delete any existing target file. This option only applies when you use fileExists=Overr
 and the option as well. You can use this to disable (set it to) deleting the target file before the temp ide tempFileName false

file is written. For example you may write big files and want the target file to exist while the temp file is being written. This
ensures that the target file is only deleted at the very last moment, just before the temp file is being renamed to the target
filename.

From onward this option is also used to control whether to delete any existing files when is Camel 2.10.1 fileExist=Move
enabled, and an existing file exists. If this option is , then an exception will be thrown if copyAndDeleteOnRenameFail false
an existing file existed. When the existing file is deleted before the move operation.true

doneFi
leName

null Camel 2.6: If provided, then Camel will write a second file (called) when the original file has been written. The done file done file
will be empty. This option configures what file name to use. You can either specify a fixed name, or you can use dynamic
placeholders. The will be written in the same folder as the original file. See section for done file always writing done file
examples.

allowN
ullBody

false Camel 2.10.1: Used to specify if a null body is allowed during file writing. If set to true then an empty file will be created, when
set to false, and attempting to send a null body to the file component, a the a message GenericFileWriteException
'Cannot write null body to file' will be thrown.

If the file will be truncated. If the file will remain unchanged.fileExist=Override fileExist=append

forceW
rites

true Camel 2.10.5/2.11: Whether to force syncing writes to the file system. You can turn this off if you do not want this level of
guarantee, for example if writing to logs / audit logs etc; this would yield better performance.

chmod null Camel 2.15.0: Specify the file p , the ermissions which is sent by the producer chmod value must be between and ; If 000 777

there is a leading digit like in we will ignore it.0755

chmodD
irecto
ry

null Camel 2.17.0: Specify the directory permissions used when the producer creates missing directories, the chmod value must be
between and ; If there is a leading digit like in we will ignore it.000 777 0755

Default behavior for file producer

https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/FTP2

By default it will override any existing file, if one exist with the same name.

Move and Delete operations

Any move or delete operations is executed after (post command) the routing has completed; so during processing of the the file is still located Exchange
in the inbox folder.

Lets illustrate this with an example:

javafrom("file://inbox?move=.done") .to("bean:handleOrder");

When a file is dropped in the folder, the file consumer notices this and creates a new that is routed to the bean. inbox FileExchange handleOrder
The bean then processes the object. At this point in time the file is still located in the folder. After the bean completes, and thus the route is File inbox
completed, the file consumer will perform the move operation and move the file to the sub-folder..done

The and the options are considered as a directory name though if you use an expression such as , or then the result move preMove File Language Simple
of the expression evaluation is the file name to be used e.g., if you set

move=../backup/copy-of-${file:name}

then that's using the which we use return the file name to be used), which can be either relative or absolute. If relative, the directory is File Language
created as a sub-folder from within the folder where the file was consumed.

By default, Camel will move consumed files to the sub-folder relative to the directory where the file was consumed..camel

If you want to delete the file after processing, the route should be:

javafrom("file://inobox?delete=true") .to("bean:handleOrder");

We have introduced a move operation to move files they are processed. This allows you to mark which files have been scanned as they are pre before
moved to this sub folder before being processed.

javafrom("file://inbox?preMove=inprogress") .to("bean:handleOrder");

You can combine the move and the regular move:pre

javafrom("file://inbox?preMove=inprogress&move=.done") .to("bean:handleOrder");

So in this situation, the file is in the folder when being processed and after it's processed, it's moved to the folder.inprogress .done

Fine Grained Control Using The and Optionsmove preMove

The and options are -based, so we have the full power of the to do advanced configuration of the directory and move preMove Expression File Language
name pattern.
Camel will, in fact, internally convert the directory name you enter into a expression. So when we enter Camel will convert this File Language move=.done
into: . This is only done if Camel detects that you have not provided a in the option value yourself. So }${file:parent}/.done/${file:onlyname {}$
when you enter a Camel will convert it and thus you have the full power.{}$ not

So if we want to move the file into a backup folder with today's date as the pattern, we can do:

move=backup/${date:now:yyyyMMdd}/${file:name}

About moveFailed

The option allows you to move files that be processed successfully to another location such as a error folder of your choice. For moveFailed could not
example to move the files in an error folder with a timestamp you can use moveFailed=/error/${file:name.noext}-${date:now:

.}yyyyMMddHHmmssSSS}.${file:ext

See more examples at File Language

Message Headers

The following headers are supported by this component:

File producer only
confluenceTableSmall

Header Description

CamelFile
Name

Specifies the name of the file to write (relative to the endpoint directory). This name can be a ; a with a or String String File Language
 expression; or an object. If it's then Camel will auto-generate a filename based on the message unique ID.Simple Expression null

CamelFile
NameProdu
ced

The absolute file path (path + name) for the output file that was written. This header is set by Camel and its purpose is providing end-
users with the name of the file that was written.

https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Expression

CamelOver
ruleFileN
ame

Camel 2.11: Is used for overruling header and use the value instead (but only once, as the producer will remove this CamelFileName
header after writing the file). The value can be only be a String. Notice that if the option has been configured, then this is still fileName
being evaluated.

File consumer only
confluenceTableSmall

Header Description

CamelFile
Name

Name of the consumed file as a relative file path with offset from the starting directory configured on the endpoint.

CamelFile
NameOnly

Only the file name (the name with no leading paths).

CamelFile
Absolute

A option specifying whether the consumed file denotes an absolute path or not. Should normally be for relative paths. boolean false
Absolute paths should normally not be used but we added to the move option to allow moving files to absolute paths. But can be used
elsewhere as well.

CamelFile
AbsoluteP
ath

The absolute path to the file. For relative files this path holds the relative path instead.

CamelFile
Path

The file path. For relative files this is the starting directory + the relative filename. For absolute files this is the absolute path.

CamelFile
RelativeP
ath

The relative path.

CamelFile
Parent

The parent path.

CamelFile
Length

A value containing the file size.long

CamelFile
LastModif
ied

A value containing the last modified timestamp of the file. In the type is .Long Camel 2.10.3 and older Date

Batch Consumer

This component implements the .Batch Consumer

Exchange Properties, file consumer only

As the file consumer implements the it supports batching the files it polls. By batching we mean that Camel will add the following BatchConsumer
additional properties to the , so you know the number of files polled, the current index, and whether the batch is already completed.Exchange

confluenceTableSmall

Property Description

CamelBatchSize The total number of files that was polled in this batch.

CamelBatchIndex The current index of the batch. Starts from 0.

CamelBatchComplete A value indicating the last in the batch. Is only for the last entry.boolean Exchange true

This allows you for instance to know how many files exist in this batch and for instance let the aggregate this number of files.Aggregator2

Using charset

Available as of Camel 2.9.3
The option allows for configuring an encoding of the files on both the consumer and producer endpoints. For example if you read utf-8 files, and charset
want to convert the files to iso-8859-1, you can do:

from("file:inbox?charset=utf-8") .to("file:outbox?charset=iso-8859-1")

You can also use the in the route. In the example below we have still input files in utf-8 format, but we want to convert the file content to convertBodyTo
a byte array in iso-8859-1 format. And then let a bean process the data. Before writing the content to the outbox folder using the current charset.

from("file:inbox?charset=utf-8") .convertBodyTo(byte[].class, "iso-8859-1") .to("bean:myBean") .to("file:outbox");

If you omit the charset on the consumer endpoint, then Camel does not know the charset of the file, and would by default use "UTF-8". However you can
configure a JVM system property to override and use a different default encoding with the key .org.apache.camel.default.charset

https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator2

In the example below this could be a problem if the files is not in UTF-8 encoding, which would be the default encoding for read the files.
In this example when writing the files, the content has already been converted to a byte array, and thus would write the content directly as is (without any
further encodings).

from("file:inbox") .convertBodyTo(byte[].class, "iso-8859-1") .to("bean:myBean") .to("file:outbox");

You can also override and control the encoding dynamic when writing files, by setting a property on the exchange with the key .Exchange.CHARSET_NAME
For example in the route below we set the property with a value from a message header.

from("file:inbox") .convertBodyTo(byte[].class, "iso-8859-1") .to("bean:myBean") .setProperty(Exchange.CHARSET_NAME, header
("someCharsetHeader")) .to("file:outbox");

We suggest to keep things simpler, so if you pickup files with the same encoding, and want to write the files in a specific encoding, then favor to use the ch
 option on the endpoints.arset

Notice that if you have explicit configured a option on the endpoint, then that configuration is used, regardless of the charset Exchange.CHARSET_NAME
property.

If you have some issues then you can enable logging on , and Camel logs when it reads/write a file using DEBUG org.apache.camel.component.file
a specific charset.
For example the route below will log the following:

from("file:inbox?charset=utf-8") .to("file:outbox?charset=iso-8859-1")

And the logs:

DEBUG GenericFileConverter - Read file /Users/davsclaus/workspace/camel/camel-core/target/charset/input/input.txt with charset utf-8 DEBUG
FileOperations - Using Reader to write file: target/charset/output.txt with charset: iso-8859-1

Common gotchas with folder and filenames

When Camel is producing files (writing files) there are a few gotchas affecting how to set a filename of your choice. By default, Camel will use the message
ID as the filename, and since the message ID is normally a unique generated ID, you will end up with filenames such as: ID-MACHINENAME-2443-

. If such a filename is not desired, then you must provide a filename in the message header. The constant, 1211718892437-1-0 CamelFileName Excha
, can also be used.nge.FILE_NAME

The sample code below produces files using the message ID as the filename:

from("direct:report") .to("file:target/reports");

To use as the filename you have to do:report.txt

from("direct:report") .setHeader(Exchange.FILE_NAME, constant("report.txt")) .to("file:target/reports");

... the same as above, but with :CamelFileName

from("direct:report") .setHeader("CamelFileName", constant("report.txt")) .to("file:target/reports");

And a syntax where we set the filename on the endpoint with the URI option.fileName

from("direct:report") .to("file:target/reports/?fileName=report.txt");

Filename Expression

Filename can be set either using the option or as a string-based expression in the header. See the expression File Language CamelFileName File
 for syntax and samples.Language

Consuming files from folders where others drop files directly

Beware if you consume files from a folder where other applications write files to directly. Take a look at the different options to see what suits readLock
your use cases. The best approach is however to write to another folder and after the write move the file in the drop folder. However if you write files
directly to the drop folder then the option changed could better detect whether a file is currently being written/copied as it uses a file changed algorithm to
see whether the file size / modification changes over a period of time. The other options rely on Java File API that sadly is not always very good readLock
at detecting this. You may also want to look at the option, which uses a marker file (done file) to signal when a file is done and ready to be doneFileName
consumed.

Using 'done' Files

Available as of Camel 2.6

See also section below.writing done files

If you want only to consume files when a done file exists, then you can use the option on the endpoint.doneFileName

javafrom("file:bar?doneFileName=done");

https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language

Will only consume files from the bar folder, if a done exists in the same directory as the target files. Camel will automatically delete the when file done file
it's done consuming the files. From Camel onward Camel will not automatically delete the if is configured.2.9.3 done file noop=true

However it is more common to have one per target file. This means there is a 1:1 correlation. To do this you must use dynamic placeholders in done file
the option. Currently Camel supports the following two dynamic tokens: and which must be enclosed in doneFileName file:name file:name.noext $

. The consumer only supports the static part of the name as either prefix or suffix (not both).{} done file

javafrom("file:bar?doneFileName=${file:name}.done");

In this example only files will be polled if there exists a done file with the name .done. For examplefile name

hello.txt - is the file to be consumed
hello.txt.done - is the associated done file

You can also use a prefix for the done file, such as:

javafrom("file:bar?doneFileName=ready-${file:name}");

hello.txt - is the file to be consumed
ready-hello.txt - is the associated done file

Writing 'done' Files

Available as of Camel 2.6

After you have written a file you may want to write an additional as a kind of marker, to indicate to others that the file is finished and has been done file
written. To do that you can use the option on the file producer endpoint.doneFileName

java.to("file:bar?doneFileName=done");

Will simply create a file named in the same directory as the target file.done

However it is more common to have one done file per target file. This means there is a 1:1 correlation. To do this you must use dynamic placeholders in
the option. Currently Camel supports the following two dynamic tokens: and which must be enclosed in doneFileName file:name file:name.noext $

.{}

java.to("file:bar?doneFileName=done-${file:name}");

Will for example create a file named if the target file was in the same directory as the target file.done-foo.txt foo.txt

java.to("file:bar?doneFileName=${file:name}.done");

Will for example create a file named if the target file was in the same directory as the target file.foo.txt.done foo.txt

java.to("file:bar?doneFileName=${file:name.noext}.done");

Will for example create a file named if the target file was in the same directory as the target file.foo.done foo.txt

Examples

Read from a directory and write to another directory
javafrom("file://inputdir/?delete=true") .to("file://outputdir")

Read from a directory and write to another directory using a overrule dynamic name
javafrom("file://inputdir/?delete=true") .to("file://outputdir?overruleFile=copy-of-${file:name}")

Listen on a directory and create a message for each file dropped there. Copy the contents to the and delete the file in the outputdir .inputdir

Reading recursively from a directory and writing to another
javafrom("file://inputdir/?recursive=true&delete=true") .to("file://outputdir")

Listen on a directory and create a message for each file dropped there. Copy the contents to the and delete the file in the . Will outputdir inputdir
scan recursively into sub-directories. Will lay out the files in the same directory structure in the as the , including any sub-directories.outputdir inputdir

inputdir/foo.txt inputdir/sub/bar.txt

Will result in the following output layout:

outputdir/foo.txt outputdir/sub/bar.txt

Using flatten

If you want to store the files in the directory in the same directory, disregarding the source directory layout e.g., to flatten out the path, you just outputdir
add the option on the file producer side:flatten=true

javafrom("file://inputdir/?recursive=true&delete=true") .to("file://outputdir?flatten=true")

Will result in the following output layout:

outputdir/foo.txt outputdir/bar.txt

Reading from a directory and the default move operation

Camel will by default move any processed file into a subdirectory in the directory the file was consumed from..camel

javafrom("file://inputdir/?recursive=true&delete=true") .to("file://outputdir")

Affects the layout as follows:
before

inputdir/foo.txt inputdir/sub/bar.txt

after

inputdir/.camel/foo.txt inputdir/sub/.camel/bar.txt outputdir/foo.txt outputdir/sub/bar.txt

Read from a directory and process the message in java
from("file://inputdir/").process(new Processor() { public void process(Exchange exchange) throws Exception { Object body = exchange.getIn().getBody(); //
do some business logic with the input body } });

The body will be a object that points to the file that was just dropped into the directory.File inputdir

Writing to files

Camel is of course also able to write files, i.e. produce files. In the sample below we receive some reports on the SEDA queue that we process before they
are being written to a directory.{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/component/file/ToFileRouteTest.java}

Write to subdirectory using Exchange.FILE_NAME

Using a single route, it is possible to write a file to any number of subdirectories. If you have a route setup as such:

xml <route> <from uri="bean:myBean"/> <to uri="file:/rootDirectory"/> </route>

You can have set the header to values such as:myBean Exchange.FILE_NAME

Exchange.FILE_NAME = hello.txt => /rootDirectory/hello.txt Exchange.FILE_NAME = foo/bye.txt => /rootDirectory/foo/bye.txt

This allows you to have a single route to write files to multiple destinations.

Writing file through the temporary directory relative to the final destination

Sometime you need to temporarily write the files to some directory relative to the destination directory. Such situation usually happens when some external
process with limited filtering capabilities is reading from the directory you are writing to. In the example below files will be written to the /var/myapp

 directory and after data transfer is done, they will be atomically moved to the directory./filesInProgress /var/myapp/finalDirectory

javafrom("direct:start") .to("file:///var/myapp/finalDirectory?tempPrefix=/../filesInProgress/");

Using Expressions for Filenames

In this sample we want to move consumed files to a backup folder using today's date as a sub-folder name:

javafrom("file://inbox?move=backup/${date:now:yyyyMMdd}/${file:name}") .to("...");

See for more samples.File Language

Avoiding reading the same file more than once (idempotent consumer)

Camel supports directly within the component so it will skip already processed files. This feature can be enabled by setting the Idempotent Consumer idem
 option.potent=true

javafrom("file://inbox?idempotent=true") .to("...");

Camel uses the absolute file name as the idempotent key, to detect duplicate files. From onward you can customize this key by using an Camel 2.11
expression in the option. For example to use both the name and the file size as the keyidempotentKey

xml <route> <from uri="file://inbox?idempotent=true&idempotentKey=${file:name}-${file:size}"/> <to uri="bean:processInbox"/> </route>

By default Camel uses a in memory based store for keeping track of consumed files, it uses a least recently used cache holding up to 1000 entries. You
can plugin your own implementation of this store by using the option using the sign in the value to indicate it's a referring to a idempotentRepository #
bean in the with the specified Registry .id

xml <!-- define our store as a plain spring bean --> <bean id="myStore" class="com.mycompany.MyIdempotentStore"/> <route> <from uri="file://inbox?
idempotent=true&idempotentRepository=#myStore"/> <to uri="bean:processInbox"/> </route>

https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Registry

Camel will log at level if it skips a file because it has been consumed before:DEBUG

DEBUG FileConsumer is idempotent and the file has been consumed before. Will skip this file: target\idempotent\report.txt

Using a file based idempotent repository

In this section we will use the file based idempotent repository instead org.apache.camel.processor.idempotent.FileIdempotentRepository
of the in-memory based that is used as default.
This repository uses a 1st level cache to avoid reading the file repository. It will only use the file repository to store the content of the 1st level cache.
Thereby the repository can survive server restarts. It will load the content of the file into the 1st level cache upon startup. The file structure is very simple
as it stores the key in separate lines in the file. By default, the file store has a size limit of 1mb. When the file grows larger Camel will truncate the file store,
rebuilding the content by flushing the 1st level cache into a fresh empty file.

We configure our repository using Spring XML creating our file idempotent repository and define our file consumer to use our repository with the idempote
 using sign to indicate lookup:ntRepository # Registry {snippet:id=example|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org

/apache/camel/spring/processor/idempotent/fileConsumerIdempotentTest.xml}

Using a JPA based idempotent repository

In this section we will use the JPA based idempotent repository instead of the in-memory based that is used as default.

First we need a persistence-unit in where we need to use the class META-INF/persistence.xml org.apache.camel.processor.idempotent.
 as model. Next, jpa.MessageProcessed {snippet:id=e1|lang=xml|url=camel/trunk/components/camel-jpa/src/test/resources/META-INF/persistence.xml}

we can create our JPA idempotent repository in the spring XML file as well:{snippet:id=jpaStore|lang=xml|url=camel/trunk/components/camel-jpa/src/test
And yes then we just need to refer to the bean in the file /resources/org/apache/camel/processor/jpa/fileConsumerJpaIdempotentTest-config.xml} jpaStore

consumer endpoint using the using the syntax option:idempotentRepository #

xml <route> <from uri="file://inbox?idempotent=true&idempotentRepository=#jpaStore"/> <to uri="bean:processInbox"/> </route>

Filter using org.apache.camel.component.file.GenericFileFilter

Camel supports pluggable filtering strategies. You can then configure the endpoint with such a filter to skip certain files being processed.

In the sample we have built our own filter that skips files starting with in the filename:skip {snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test
And then we can configure our route using the attribute to reference our filter /java/org/apache/camel/component/file/FileConsumerFileFilterTest.java} filter

(using notation) that we have defined in the spring XML file:#

xml <!-- define our filter as a plain spring bean --> <bean id="myFilter" class="com.mycompany.MyFileFilter"/> <route> <from uri="file://inbox?
filter=#myFilter"/> <to uri="bean:processInbox"/> </route>

Filtering using ANT path matcher
New options from Camel 2.10 onwards
There are now and options to make it easy to specify ANT style include/exclude without having to define the filter. See the URI antInclude antExclude
options above for more information.

The ANT path matcher is shipped out-of-the-box in the jar. So you need to depend on if you are using Maven.camel-spring camel-spring
The reasons is that we leverage Spring's to do the actual matching.AntPathMatcher

The file paths is matched with the following rules:

? matches one character
* matches zero or more characters
** matches zero or more directories in a path

The sample below demonstrates how to use it:{snippet:id=example|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache
/camel/spring/file/SpringFileAntPathMatcherFileFilterTest-context.xml}

Sorting using Comparator

Camel supports pluggable sorting strategies. This strategy it to use the build in in Java. You can then configure the endpoint java.util.Comparator
with such a comparator and have Camel sort the files before being processed.

In the sample we have built our own comparator that just sorts by file name:{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache
And then we can configure our route using the option to reference to our sorter () we have /camel/component/file/FileSorterRefTest.java} sorter mySorter

defined in the spring XML file:

xml <!-- define our sorter as a plain spring bean --> <bean id="mySorter" class="com.mycompany.MyFileSorter"/> <route> <from uri="file://inbox?
sorter=#mySorter"/> <to uri="bean:processInbox"/> </route> URI options can reference beans using the # syntax
In the Spring DSL route above notice that we can refer to beans in the by prefixing the id with . So writing , will instruct Registry # sorter=#mySorter
Camel to go look in the for a bean with the ID, .Registry mySorter

Sorting using sortBy

Camel supports pluggable sorting strategies. This strategy it to use the to configure the sorting. The option is configured as follows:File Language sortBy

https://cwiki.apache.org/confluence/display/CAMEL/Registry
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/File+Language

sortBy=group 1;group 2;group 3;...

Where each group is separated with semi colon. In the simple situations you just use one group, so a simple example could be:

sortBy=file:name

This will sort by file name, you can reverse the order by prefixing to the group, so the sorting is now Z..A:reverse:

sortBy=reverse:file:name

As we have the full power of we can use some of the other parameters, so if we want to sort by file size we do:File Language

sortBy=file:length

You can configure to ignore the case, using for string comparison, so if you want to use file name sorting but to ignore the case then we do:ignoreCase:

sortBy=ignoreCase:file:name

You can combine ignore case and reverse, however reverse must be specified first:

sortBy=reverse:ignoreCase:file:name

In the sample below we want to sort by last modified file, so we do:

sortBy=file:modified

And then we want to group by name as a 2nd option so files with same modifcation is sorted by name:

sortBy=file:modified;file:name

Now there is an issue here, can you spot it? Well the modified timestamp of the file is too fine as it will be in milliseconds, but what if we want to sort by
date only and then subgroup by name?
Well as we have the true power of we can use its date command that supports patterns. So this can be solved as:File Language

sortBy=date:file:yyyyMMdd;file:name

Yeah, that is pretty powerful, oh by the way you can also use reverse per group, so we could reverse the file names:

sortBy=date:file:yyyyMMdd;reverse:file:name

Using GenericFileProcessStrategy

The option can be used to use a custom that allows you to implement your own , processStrategy GenericFileProcessStrategy begin commit
and logic.rollback
For instance lets assume a system writes a file in a folder you should consume. But you should not start consuming the file before another file has ready
been written as well.

So by implementing our own we can implement this as:GenericFileProcessStrategy

In the method we can test whether the special file exists. The begin method returns a to indicate if we can consume the begin() ready boolean
file or not.
In the method () special logic can be executed in case the operation returned , for example to cleanup abort() Camel 2.10 begin false
resources etc.
In the method we can move the actual file and also delete the file.commit() ready

Using filter

The option allows you to implement a custom filter in Java code by implementing the filter org.apache.camel.component.file.
 interface. This interface has an method that returns a boolean. Return to include the file, and to skip the file. GenericFileFilter accept true false

From Camel 2.10 onward, there is a method on whether the file is a directory. This allows you to filter unwanted directories, isDirectory GenericFile
to avoid traversing down unwanted directories.

For example to skip any directories which starts with in the name, can be implemented as follows:"skip" {snippet:id=e1|lang=java|url=camel/trunk/camel-
core/src/test/java/org/apache/camel/component/file/FileConsumerDirectoryFilterTest.java}

How to use the Camel error handler to deal with exceptions triggered outside the routing engine

The file and ftp consumers, will by default try to pickup files. Only if that is successful then a Camel can be created and passed in the Camel Exchange
routing engine. When the is processed by the routing engine, then the Camel takes over e.g., the / Exchange Error Handling onException errorHandler
in the routes. However outside the scope of the routing engine, any exceptions handling is component specific. Camel offers a org.apache.camel.spi.

 that allows components to use that as a pluggable hook for end users to use their own implementation. Camel offers a default ExceptionHandler Loggi
 that will log the exception at level.ngExceptionHandler /ERROR WARN

For the file and ftp components this would be the case. However if you want to bridge the so it uses the Camel , then ExceptionHandler Error Handling
you need to implement a custom that will handle the exception by creating a Camel and send it to the routing engine; then ExceptionHandler Exchange
the error handling of the routing engine can get triggered.

https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Error+handling+in+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Error+handling+in+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

Easier with Camel 2.10
The new option can be set to true, to make this even easier. See further below for more details.consumer.bridgeErrorHandler

Here is such an example based upon an unit test.

First we have a custom where you can see we deal with the exception by sending it to a Camel named ExceptionHandler Endpoint direct:file-
:error {snippet:id=e1|title=MyExceptionHandler|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/component/file

 /FileConsumerCustomExceptionHandlerTest.java}

Then we have a Camel route that uses the Camel routing error handler, which is the where we handle any being thrown. onException IOException
We then send the message to the same endpoint, where we handle it by transforming it to a message, and then being sent to a direct:file-error Mo

 endpoint. This is just for testing purpose. You can handle the exception in any custom way you want, such as using a or sending an email, etc.ck Bean

Notice how we configure our custom by using the option to refer to MyExceptionHandler consumer.exceptionHandler #myExceptionHandler
which is a id of the bean registered in the . If using Spring XML or OSGi Blueprint, then that would be a Registry <bean id="myExceptionHandler"

:class="com.foo.MyExceptionHandler"/> {snippet:id=e2|title=Camel route with routing engine error handling|lang=java|url=camel/trunk/camel-core
 /src/test/java/org/apache/camel/component/file/FileConsumerCustomExceptionHandlerTest.java}

The source code for this example can be seen here

Using consumer.bridgeErrorHandler

Available as of Camel 2.10

If you want to use the Camel to deal with any exception occurring in the file consumer, then you can enable the Error Handler consumer.
 option as shown below:bridgeErrorHandler {snippet:id=e2|title=Using consumer.bridgeErrorHandler|lang=java|url=camel/trunk/camel-core/src/test/java

So all you have to do is to enable this option, and the error /org/apache/camel/component/file/FileConsumerBridgeRouteExceptionHandlerTest.java}
handler in the route will take it from there.

Important when using consumer.bridgeErrorHandler
When using , then , s does apply. The is processed directly by the Camel consumer.bridgeErrorHandler interceptors OnCompletion not Exchange Err

, and does not allow prior actions such as interceptors, to take action.or Handler onCompletion

Debug logging

This component has log level that can be helpful if you have problems.TRACE

Endpoint See Also

File Language
FTP
Polling Consumer

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/component/file/FileConsumerCustomExceptionHandlerTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Intercept
https://cwiki.apache.org/confluence/display/CAMEL/OnCompletion
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint+See+Also
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/FTP2
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer

	File2

