
1

Distributed OSGi Reference

Distributed OSGi Reference Guide

Distributed OSGi Reference Guide
Configuration Properties

Service Provider properties For Configuring SOAP-based services and consumers
Service Provider properties For Configuring RESTful JAXRS-based endpoints and
consumers
Service Consumer properties

Custom intents
remote-services.xml files
Contributing Distribution properties to Existing Services (without changing them)

CONFIGURATION PROPERTIES

New in DOSGI 1.2: Servlet Filters (javax.servlet.Filter) can be registered as OSGi services with the "org.
apache.cxf.httpservice.filter" boolean
property set to true and used to secure DOSGi server endpoints.Endpoints can enforce the registration of the
filters by setting an "org.apache.cxf.httpservice.requirefilter" boolean property to true.

These properties are set on the Service Registration in the OSGi Service Registry.

Service Provider properties For Configuring SOAP-based services and consumers

Note: for backwards compatibility old values marked below are still supported.

Property
Name

Data
Type

Example Description

2

service.
exported.
interfaces
(previousl
y:osgi.
remote.

)interfaces

String org.

exampl

e.

BarSer

vice,

org.

exampl

e.

FooSer

vice *

Denotes the interfaces to be exposed remotely.
This is a comma-separated list of fully qualified
Java interfaces that should be made available
remotely. A special value of can be provided *

meaning that of the interfaces passed to the all Bu

 call are ndleContext.registerService()

suitable for remoting.

service.
exported.
configs
(previousl
y:osgi.
remote.
configurati

)on.type

String org.

apache

.cxf.

ws

Specifies the mechanism for configuring the
service exposure. Possible values:

org.apache.cxf.ws (previously:) the pojo

OSGi Service is exposed as a Web Service.
wsdl configuration driven from WSDL

org.apache.cxf.ws configuration type

When the (or) service.exported.configs=org.apache.cxf.ws osgi.remote.configuration.type=pojo

property is specified, the following properties may also be specified.

Property
Name

Data
Type

Example Description

org.
apache.
cxf.ws.
address
(previo
usly:os
gi.
remote.
configu
ration.
pojo.

)address

String http://lo
calhost
:9090
/greeter

The address at which the service with be made
available remotely. If this property is not specified,
this defaults to http://localhost:9000/fully/qualified

./ClassName

http://localhost:9090/greeter
http://localhost:9090/greeter
http://localhost:9090/greeter
http://localhost:9090/greeter
http://localhost:9000/fully/qualified/ClassName
http://localhost:9000/fully/qualified/ClassName

3

org.
apache.
cxf.ws.
httpser
vice.
context
(previo
usly:os
gi.
remote.
configu
ration.
pojo.
httpser
vice.

)context

String /aucti

on

When this property is specified, the OSGi HTTP
Service is used to expose the service, rather than a
dedicated Jetty HTTP Server. This property doesn't
allow the specification of a port number, as this is
provided by the HTTP Service. The Distributed
OSGi distributions come with Pax-Web, for which
configuration information can be found at http://wiki.

, however ops4j.org/display/paxweb/Configuration
other OSGi HTTP Service implementations are
potentially configured differently.

org.
apache.
cxf.ws.
frontend

String jaxws The CXF frontend which will be used to create
endpoints. Defaults to 'simple' which is an Aegis-
based simple frontend. Note that for JAXWS to work
a javax.jws.* has to be imported into the interface
and/or implementation and client bundles for
annotations like @WebService and @WebMethod
be recognized

org.
apache.
cxf.ws.
databin
ding

String jaxb Supported values are 'aegis and 'jaxb', defaults to
'aegis'. Note that for JAXB to work JAXB packages
like javax.xml.bind.annotation.* have to be imported

org.
apache.
cxf.ws.
databin
ding.
bean

Data
Bindi
ng

 An actual DataBinding instance to use. If not
specified, a default one is created according to the
type specified in the org.apache.cxf.ws.databinding
property.

http://wiki.ops4j.org/display/paxweb/Configuration
http://wiki.ops4j.org/display/paxweb/Configuration

4

org.
apache.
cxf.ws.
wsdl.
location

String /wsdl

/servi

ce.

wsdl

WSDL location

org.
apache.
cxf.ws.
service.
ns

String http://s
ervices
.org

WSDL service namespace

org.
apache.
cxf.ws.
service.
name

String SoapSe

rvice

WSDL service name

org.
apache.
cxf.ws.
port.
name

String SoapSe

rviceP

ort

WSDL port name

org.
apache.
cxf.ws.
in.
interce
ptors

Strin
g,
Strin
g[],
List

 List of CXF in interceptors

org.
apache.
cxf.ws.
out.
interce
ptors

Strin
g,
Strin
g[],
List

 List of CXF out interceptors

http://services.org
http://services.org
http://services.org

5

org.
apache.
cxf.ws.
in.fault.
interce
ptors

Strin
g,
Strin
g[],
List

 List of CXF in fault interceptors

org.
apache.
cxf.ws.
out.
fault.
interce
ptors

Strin
g,
Strin
g[],
List

 List of CXF out fault interceptors

org.
apache.
cxf.ws.
features

Strin
g,
Strin
g[],
List,
Obje
ct

 List of CXF out features

Service Provider properties For Configuring RESTful JAXRS-based endpoints and consumers

org.apache.cxf.rs configuration type

When the property is specified, the following properties service.exported.configs=org.apache.cxf.rs

may also be specified.

Property
Name

Data
Type

Example Description

org.
apache.
cxf.rs.
address

String http://lo
calhost
:9090
/greeter

The address at which the service with be made
available remotely. If this property is not specified,
this defaults to http://localhost:9000/fully/qualified

./ClassName

http://localhost:9090/greeter
http://localhost:9090/greeter
http://localhost:9090/greeter
http://localhost:9090/greeter
http://localhost:9000/fully/qualified/ClassName
http://localhost:9000/fully/qualified/ClassName

6

org.
apache.
cxf.rs.
httpser
vice.
context

String /aucti

on

When this property is specified, the OSGi HTTP
Service which is used to expose the service, rather
than a dedicated Jetty HTTP Server. By default,
absolute address may look like 'http://localhost:8080
/auction'

org.
apache.
cxf.rs.
provider

Bool
ean

true

/false

Can be used to identify a global JAXRS provider as
CXF-compatible

org.
apache.
cxf.rs.
provide
r.
expected

Bool
ean

true

/false

Can be used to require global providers to set an
'org.apache.cxf.rs.provider' property with a value
'true'.

org.
apache.
cxf.rs.
provide
r.
globalq
uery

Bool
ean

true

/false

Can be used to disable queries for global providers,
defaults to 'true'.

org.
apache.
cxf.rs.
databin
ding

String aegis This property has a limited value for JAXRS
services as JAXB is supported by default, the only
supported value is 'aegis' and it is a shortcut for
registering an Aegis provider, see below for more
information on how to register custom providers for
JAXRS services

org.
apache.
cxf.rs.
wadl.
location

String /wadl

/servi

ce.

wadl

WADL location

7

org.
apache.
cxf.rs.
provider

Strin
g,
Strin
g[],
List

 List of JAX-RS providers

org.
apache.
cxf.rs.
in.
interce
ptors

Strin
g,
Strin
g[],
List

 List of CXF in interceptors

org.
apache.
cxf.rs.
out.
interce
ptors

Strin
g,
Strin
g[],
List

 List of CXF out interceptors

org.
apache.
cxf.rs.
in.fault.
interce
ptors

Strin
g,
Strin
g[],
List

 List of CXF in fault interceptors

org.
apache.
cxf.rs.
out.
fault.
interce
ptors

Strin
g,
Strin
g[],
List

 List of CXF out fault interceptors

org.
apache.
cxf.rs.
features

Strin
g,
Strin
g[],
List

 List of CXF out features

8

Note that by default for JAXRS to work javax.ws.rs.* packages have to be imported into the interface and/or
implementation and client bundles for annotations like @Path and @Context be recognized. You can avoid
importing JAXRS annotations if you provide an out-of-band . The way it is done in a greeter_rest demo model
is described . The model files can be located in a OSGI-INF/cxf/jaxrs resource folder and can be named here
as model.xml or ServiceName-model.xml (ex : GreeterService-model.xml).
If you use JAXB and you would like to avoid importing JAXB packages into your application bundles then you
can try registering a custom JAXB provider which is configured as described .here

Registering custom JAXRS providers

Custom JAXRS providers including CXF-specific providers can be registered like regular OSGI services, for
example :

Object provider = new CustomMessageBodyReaderWriter();
bundleContext.registerService(
 new String[]{"javax.ws.rs.ext.MessageBodyReader", "javax.ws.rs.ext.
MessageBodyReader"}, provider);

Note that when registering a global provider, one may set an 'org.apache.cxf.rs.provider.expected' on a given
service description thus requiring providers to confirm that they will reliably work with CXF JAX-RS by setting
a 'org.apache.cxf.rs.provider' true property during the registration - this may be needed when multiple JAX-RS
implementations are available and some custom providers depending on JAXRS implementation specific
code.

Alternatively, one can register per-service specific providers during the application service registration :

CustomMessageBodyReaderWriter provider1 = new CustomMessageBodyReaderWriter();
provider.setCustomProperty(true);
CustomMessageBodyReaderWriter provider2 = new CustomMessageBodyReaderWriter();
provider2.setCustomProperty(false);

Dictionary properties = new Hashtable();
properties.put("org.apache.cxf.rs.provider", provider);

Dictionary properties2 = new Hashtable();
properties.put("org.apache.cxf.rs.provider", provider2);

bundleContext.registerService(
 new String[]{"org.books.BookService"}, new BookServiceImpl(), properties);
bundleContext.registerService(
 new String[]{"org.books.BookService"}, new AdvancedBookServiceImpl(),
properties2);

Finally, one can declare them using "org.apache.cxf.rs.provider" :

<property name="org.apache.cxf.rs.provider" value="org.foo.bar.Provider1,org.
foo.bar.Provider2"/>

or, when using declarative services :

http://cxf.apache.org/docs/jax-rs.html#JAX-RS-RESTfulserviceswithoutannotations
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-IntegrationwithDistributedOSGi
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-HandlingJAXBbeanswithoutXmlRootElementannotations

9

<property name="org.apache.cxf.rs.provider">
 org.foo.bar.Provider1
 org.foo.bar.Provider2
</property>

Service Consumer properties

On client side proxies, typically the same properties are set as on set service provider side for both SOAP
and RESTful clients. There are some additional properties too. Since the client-side proxy is registered by the
DOSGi implementation, all these properties are read-only.

Property
Name

Data
Type

Example Description

service.
imported

bool
ean

true This property is always set on a service proxy,
indicating that the real service is remote.

org.
apache.
cxf.
remote.
dsw.client

String This property is set to the bundle name of the
CXF-DOSGi implementation and can be used to
find client side proxies created by the CXF
DOSGi implementation.

CUSTOM INTENTS

Intents allow to define custom configurations for DOSGi services. In the service exports the intents are listed
by name in the property "service.exported.intents".

In version 1.4.0 and above custom intents are defined as OSGi services. The property name "org.apache.
cxf.dosgi.IntentName" is used to mark the service as an intent. The intent name value then can be used to
reference the intent in OSGi services. Custom intents can either be CXF Features or a CXF Binding
Configuration.

REMOTE-SERVICES.XML FILES

The CXF DOSGi implementation provides a DSW (Distribution Software) implementation of Distributed OSGi.
It is compatible with any Distributed OSGi Discovery implementation in order to discover remote services
dynamically.

However, using a Discovery system is optional, it is also possible to statically configure remote services
into the system. This is done by registering one or more bundles containing files. By remote-services.xml

default the system looks for any files with the extension in the directory of .xml OSGI-INF/remote-service

the bundle.

Here's an example:

10

<service-descriptions xmlns="http://www.osgi.org/xmlns/sd/v1.0.0">
 <service-description>
 <provide interface="org.apache.cxf.dosgi.samples.greeter.GreeterService" />
 <property name="osgi.remote.interfaces">*</property>
 <property name="osgi.remote.configuration.type">pojo</property>
 <property name="osgi.remote.configuration.pojo.address">http://localhost:
9090/greeter</property>
 </service-description>

 <!-- further service-description tags are allowed here -->
</service-descriptions>

Alternative locations

By default all files in the OSGI-INF/remote-service location are considered, this location can be *.xml

changed by setting the header in the bundle manifest, e.g.Remote-Service

Remote-Service: META-INF/osgi

CONTRIBUTING DISTRIBUTION PROPERTIES TO EXISTING SERVICES (WITHOUT
CHANGING THEM)

@@@ TODO check that this still works with the 1.2 release.

CXF/DOSGi allows you to add the distribution properties to existing OSGi services. You can do this by
installing a bundle that contains an XML file with the extra properties in the OSGI-INF/remote-service

directory:

A sample file looks like this:OSGI-INF/remote-service/sd.xml

<service-decorations xmlns="http://cxf.apache.org/xmlns/service-decoration/1.
0.0">
 <service-decoration>
 <match interface="org.apache.F(.*)">
 <match-property name="test.prop" value="xyz"/>
 <add-property name="service.exported.interfaces" value="*"/>
 </match>
 </service-decoration>
</service-decorations>

A service decorations file can have any number of tags, each tag describing a service-decoration match
rule for services that are to be decorated.
The match rules are defined as follows:

match interface="org.apache.Foo" matches any service that is registered under the org.apache.
 class or interface. The attribute takes regular expressions, so specifying Foo interface org.apache

 will match any service registered with an interface in a subpackage of .(.)* org.apache

11

The optional tags allows you to declare extra conditions to be applied to services match-property

of which the interface matches. In the above example the rule will only match services that have the t
 property set to the value . Other services don't match. Any number of est.prop xyz match-property

tags can be specified.
The specifies the extra property to be added to the remote service. The above add-property

example adds which will cause any matching service to be service.exported.interfaces="*"

exposed remotely. The has an optional attribute which defaults to add-property type java.lang.

. You can specify other Java basic types such as if needed. You can have String java.lang.Long

any number of tags.add-property

Note the bundle with the extra metadata will need to be started before the bundle with the service that is to be
remoted is started (need to fix this).

	Distributed OSGi Reference

