
Intercept

Intercept

The intercept feature in Camel supports intercepting s while they are . We have overhauled the in Camel 2.0 so the following Exchange en route Intercept
information is based on Camel 2.0.

Camel supports three kinds of interceptors:

intercept that intercepts each and every processing step while routing an in the route.Exchange
interceptFrom that intercepts incoming in the route.Exchange
interceptSendToEndpoint that intercepts when an is about to be sent to the given .Exchange Endpoint

These interceptors supports the following features:

Predicate using to only trigger the interceptor in certain conditionswhen
stop forces to stop continue routing the and mark it as completed successful. Camel will by default .Exchange not stop
skip when used with will routing the to the original endpoint. Camel will by default .interceptSendToEndpoint skip Exchange not skip
interceptFrom and supports endpoint URI matching by: exact URI, wildcard, regular expression. See interceptSendToEndpoint
advanced section.
The intercepted endpoint URI is stored as message header .Exchange.INTERCEPTED_ENDPOINT

stop
stop can be used in general, it does not have to be used with an you can use it in regular routing as well.Intercept

You can also instruct Camel to continue routing your message if you set the property to or on the stop Exchange.ROUTE_STOP true Boolean.TRUE Ex
. You can for instance do this from regular Java code in a or .change Pojo Processor

Intercept

Intercept is like a regular interceptor that is applied on each processing step the undergo while its being routed. You can think of it as a Exchange AOP
 that is applied at each DSL keyword you have defined in your route.before

The classic Hello World example is:

intercept() .to("log:hello"); from("jms:queue:order") .to("bean:validateOrder") .to("bean:processOrder");

What happens is that the is intercepted before each processing step, that means that it will be intercepted before:Exchange

.to("bean:validateOrder")

.to("bean:processOrder")

So in this sample we intercept the twice.Exchange

The predicate is also support on the so we can attach a to only trigger the interception under certain conditions. For instance when intercept Predicate
in the sample below we only intercept if the message body contains the string word :Hello {snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test

And in the route below we want to stop in certain conditions, when the /java/org/apache/camel/processor/intercept/InterceptSimpleRouteWhenTest.java}
message contains the word :Hello {snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/intercept
/InterceptSimpleRouteWhenStopTest.java}

Using from Spring DSL

The same hello world sample in Spring DSL would be:

xml<camelContext> <intercept> <to uri="log:hello"/> </intercept> <route> <from uri="jms:queue:order"/> <to uri="bean:validateOrder"/> <to uri="bean:
handleOrder"/> </route> </camelContext>

And the sample for using the predicate would be:when() {snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache
And the sample for using the and would be:/camel/spring/processor/SpringInterceptSimpleRouteWhenTest.xml} when() stop() {snippet:

id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor
/SpringInterceptSimpleRouteWhenStopTest.xml}

InterceptFrom

InterceptFrom is for intercepting any incoming , in any route (it intercepts all the DSLs). This allows you to do some custom behavior for Exchange from
received s. You can provide a specific URI for a given then it only applies for that particular route.Exchange Endpoint

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint

So lets start with the logging example. We want to log all the requests so we use to route to the component. As incoming interceptFrom Log proceed
is default then the will continue its route, and thus it will continue to .Exchange mock:first {snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test

You can also attach a to only trigger if certain conditions is meet. /java/org/apache/camel/processor/intercept/InterceptFromSimpleLogTest.java} Predicate
For instance in the route below we intercept when a test message is send to us, so we can do some custom processing before we continue routing:{snippet

And if we want to :id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/intercept/InterceptFromSimplePredicateTest.java}
filter out certain messages we can use the to instruct Camel to stop continue routing the :stop() Exchange {snippet:id=e1|lang=java|url=camel/trunk

And if want to only apply a specific /camel-core/src/test/java/org/apache/camel/processor/intercept/InterceptFromSimplePredicateWithStopTest.java}
endpoint, as the endpoint in the sample below, we can do it like this:seda:bar {snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org
/apache/camel/processor/intercept/InterceptFromUriSimpleLogTest.java}

Using from Spring DSL

Intercept is of course also available using Spring DSL as shown in the sample below:{snippet:id=example|lang=xml|url=camel/trunk/components/camel-
spring/src/test/resources/org/apache/camel/spring/processor/SpringInterceptFromTest.xml}

Note: is also supported in so you can intercept from certain endpoints and route then elsewhere and to not continue stop() interceptFrom() stop()
routing in the original intended route path.

InterceptSendToEndpoint

InterceptSendToEndpoint

Available as of Camel 2.0

Intercept send to endpoint is triggered when an is being sent to the intercepted endpoint. This allows you to route the to a or Exchange Exchange Detour
do some custom processing before the is sent to the original intended destination. You can also skip sending to the intended destination. By Exchange
default Camel will send to the original intended destination after the intercepted route completes. And as the regular intercept you can also define an when

 so we only intercept if the evaluates to . This allows you do do a bit of filtering, to only intercept when certain criteria is meet.Predicate Predicate true

Let start with a simple example, where we want to intercept when an is being sent to :Exchange mock:foo {snippet:id=e1|lang=java|url=camel/trunk/camel-
And this time we add the so its only when the core/src/test/java/org/apache/camel/processor/intercept/InterceptSendToEndpointTest.java} Predicate

message body is we intercept.Hello World {snippet:id=e2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/intercept
And to skip sending to the endpoint we use the DSL in the route at the end to instruct Camel to /InterceptSendToEndpointTest.java} mock:foo *skip()

skip sending to the original intended endpoint.{snippet:id=e3|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/intercept
/InterceptSendToEndpointTest.java}

Conditional skipping
The combination of with a predicate behaves differently depending on the Camel version:skipSendToEndpoint when

Before Camel 2.10: the skipping is applied unconditionally whether the predicate is matched or not, i.e. the predicate only when() when()
determines whether the body of the interception will execute, but it does not control skipping behavior.
From Camel 2.10: the skipping only occurs if the predicate is matched, leading to more natural logic altogether.when()

Using from Spring DSL

Intercept endpoint is of course also available using Spring DSL. We start with the first example from above in Spring DSL:{snippet:
And the id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/interceptSendToEndpoint.xml}

second. Notice how we can leverage the language for the :Simple Predicate {snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test
And the third with the ; notice skip is set with the /resources/org/apache/camel/spring/processor/interceptSendToEndpointWhen.xml} skip skipSendToOri

 attribute on the tag:ginalEndpoint interceptSendToEndpoint {snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources
/org/apache/camel/spring/processor/interceptSendToEndpointSkip.xml}

Advanced usage of Intercept

The and supports endpoint URI matching by the following rules in the given order:interceptFrom interceptSendToEndpoint

match by exact URI name. This is the sample we have seen above.
match by wildcard
match by regular expression.

The real endpoint that was intercepted is stored as URI in the message IN header with the key . This allows you to Exchange.INTERCEPTED_ENDPOINT
get hold of this information, when you for instance match by wildcard. Then you know the real endpoint that was intercepted and can react accordingly.

Match by Wildcard

Match by wildcard allows you to match a range of endpoint or all of a given type. For instance use will match all based endpoints:uri="file:*" File

javaintercept("jms:*") .to("log:fromjms");

Wildcards is match that the text before the is matched against the given endpoint and if it also starts with the same characters its a match. For instance *
you can do:

javaintercept("file://order/inbox/*") .to("log:newfileorders");

https://cwiki.apache.org/confluence/display/CAMEL/Log
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Detour
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/File2

To intercept any files received from the folder.order/inbox

Match by Regular Expression

Match by regular expression is just like match by wildcard but using regex instead. So if we want to intercept incoming messages from gold and silver JMS
queues we can do:

javaintercept("jms:queue:(gold|silver)") .to("seda:handleFast"); About dynamic and static behavior of interceptFrom and interceptSendToEndpoint
The is dynamic hence it will also trigger if a dynamic URI is constructed that Camel was not aware of at startup time.interceptSendToEndpoint
The is not dynamic as it only intercepts input to routes registered as routes in . So if you dynamic construct a interceptFrom CamelContext Consumer
using the Camel API and consumes an then the is not triggered.Endpoint interceptFrom

See Also

Architecture
AOP

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/AOP

	Intercept

