
1.

Geronimo GShell Commands
GShell Commands
GShell is a command-line processing environment that can be used for the execution of commands. It includes support for editing, command history, input
/output redirection, and more. A number of Geronimo administrative commands have been implemented using GShell.:

Commands Description

help or ? Display help information

echo or print Print arguments to STDOUT

source or . Load a file or URL to the current shell

clear Clear the terminal screen

set Set a variable

unset Unset a variable

exit or quit Exit GShell

geronimo/start-server Start a server

geronimo/stop-server Stop the server

geronimo/wait-for-server Wait for the server to start

geronimo/start-client Start an application client

deploy/connect Connect to a Geronimo server

deploy/login Save the username and password for this
connection

deploy/disconnect Disconnect from a Geronimo server

deploy/deploy Deploy a module

deploy/redeploy Redeploy a module

deploy/undeploy Undeploy a module

deploy/distribute Distribute a module

deploy/start Start a module

deploy/restart Restart a module

deploy/stop Stop a module

deploy/list-modules List modules

deploy/list-targets List targets

deploy/list-plugins Install plug-ins into the server

deploy/install-library Install library

deploy/install-plugin Install a plug-in

deploy/assemble Extract a Geronimo server from the current one

deploy/new-instance Create a new instance

remote/rsh Connect to a remote GShell server

remote/rsh-server Start a remote GShell server

cluster/heartbeat Monitor cluster heartbeat

cluster/deploy Administer cluster

jaxws/java2ws Generate WSDL file from class

jaxws/wsgen Generate JAX-WS artifacts from class

jaxws/wsdl2java Generate Java classes from WSDL

jaxws/wsimport Generate JAX-WS artifacts from WSDL

Running GShell and Getting Help

A simple launcher script/.bat file is located in the directory, where is the server's installation directory.<Geronimo_HOME>/bin <Geronimo_HOME>

1.
2.

On linux/Unix/Solaris, execute <Geronimo_HOME>/bin/gsh.sh
On Windows, execute <Geronimo_HOME>\bin\gsh.bat

Note: do not launch GShell with the --secure option (supported in Geronimo 2.1.0.1 or later). It is only supported in GShell commands, but not the scripts.

The (or) command alone will display all GShell commands that are available in the current environment. To obtain help information on any specific help ?
command, use the () option. Here is an example:--help -h

deploy/list-modules --help

or

deploy/list-modules -h

You can use the or command to exit GShell.exit quit

GShell Commands

Note: Windows users, use forward slash "/" instead of the traditional back slash "\" as directory seperators within GShell commands. Using back slash may
cause errors in processing the command.

General Options

Here are common options that apply to most of GShell commands:

Option Usage Description

-u, or --user -u <user> It is used to provide username. Initially the user name is . If you don't provide this option, you will be prompted system
to.

-w, or --password -w <password> It is used to provide password. Initially the password is .If you don't provide this option, you will be prompted manager
to.

-s, --hostname, or --
server

-s <server
hostname>

This option can be used to specify the hostname. If no hostname is specified then the hostname defaults to .localhost

-p, or --port -p <port> This option can be used to specify a port to contact the host. If not specified, the default port is .1099

--secure --secure Can be used to communicate with JMX server via a secure channel.This option is only available in Geronimo 2.1.0.1 or
later.

Note: For Geronimo 2.1.0.1 or above, you can work with the RMI/JMX option in GShell commands. You may need to check out the topic --secure Configuri
 before using this option.ng secure JMX server

Echo or print

The () command is used to print arguments to STDOUT.echo print

Source

The command takes an external file (or URL) and reads the content in line by line, executing each line. For example, if you have a file named source
example.gsh, with its content like this:

example.gsh

echo "Hello"
echo "Testing source now"
echo "Bye"

In GShell, use source command following this syntax:

source ./example.gsh

or

. ./example.gsh

https://cwiki.apache.org/confluence/display/GMOxDOC22/Configuring+secure+JMX+server
https://cwiki.apache.org/confluence/display/GMOxDOC22/Configuring+secure+JMX+server

You will get the following results:

Hello
Testing source now
Bye

Clear

The command can be used to clear the screen. clear
 This command is not available on the Windows platform.Note:

Setting and unsetting variables

The command can be used to set a variable, and follows this syntax:set

set <variable1>=string
set <variable2>="A string separated by space"

variable1 is a variable containing no space or special character, so there is no need to add the quotation marks. Here is an example:

set username=system
set password=manager
deploy/connect -u $username -w $password

set newstring="two strings"
echo $newstring

The command is used to cancel your previous setting.unset

unset <variable>

Starting and stopping a server

The server can be started through GShell using the command. This command provides the following options:geronimo/start-server

geronimo/start-server -A <JAR> -D <name=value> -G <name=value> -H <dir> -J <flag> -P <name>
-b -j <dir> -l <file> -m <module> -p <port> -q -t <time> -u <user> -v -w <password> --secure

These options are described in the following table besides the :general options

Option Usage Description

-A, or --javaagent -A <JAR> Identify the specific Java Agent with a JAR file containing its path. To disable it, set it to 'none'.

-D, or --property -D
<name=value>

Define system properties.

-G, or --gproperty -G
<name=value>

Define org.apache.geronimo properties. This option is probably used if you start two or more Geronimo instances on your server.

-H, or --home -H <dir> Provide a specific Geronimo home directory. This option is probably used if you start two or more Geronimo instances on your
server.

-J, or --javaopt -J <flag> Set a Java Virtual Machine (JVM) flag.

-P, or --profile -P <name> Select a configuration profile.

-b, or --
background

-b If provided, the server process will run in the background.

-j, or --jvm -j <dir> Use a specific JVM for the server process.

-l, or --logfile -l <file> Capture the console output to a log file.

-m, or --module -m <module> Start up a specific module.

-q, or --quiet -q Suppress warning and informative message.

-t, or --timeout -t <time> Identify the timeout in seconds.

-v, or --verbose -v Enable verbose output, resulting in more console output than is normally present.

The server can be stopped using the command. It uses the following syntax:geronimo/stop-server

geronimo/stop-server -u <user> -w <password> -s <server hostname> -p <port> --secure

See for information about the options of this command.general options

Waiting for the server to start

The command is used to verify if the server has started in the given time (in seconds). It has the following syntax:geronimo/wait-for-server

geronimo/wait-for-server -u <user> -w <password> -s <server hostname> -p <port> -t <time> --secure

Option Usage Description

-t, or --timeout -t <time> Can be used to specify the time (in seconds) to wait while verifying the that the server has started. -1 means the command will wait infinitely

If the option is not provided, the default timeout is 60 seconds. See for information about the rest of options.-t general options

Starting an application client

Before starting a client, you have to deploy the application to the server. See for information about deployment plan templates creating deployment plans
for application clients, and for how to deploy your applications to the server. deploying modules
The command has the following syntax:geronimo/start-client

geronimo/start-client <config-name> <args> -A <JAR> -D <name=value> -G <name=value> -H <dir> -J <flag> -P
<name>
-b -j <dir> -l <file> -t <time> -v --secure

where is the configurations for your application client, and are application specific arguments. The command can config-name args geronimo/start-client
be issued with the following options:

Option Usage Description

-A, or --javaagent -A <JAR> Identify the specific Java Agent with a JAR file containing its path. To disable it, set it to 'none'.

-D, or --property -D
<name=value>

Define system properties.

-G, or --gproperty -G
<name=value>

Define org.apache.geronimo properties. This option is probably used if you start two or more Geronimo instances on your server.

-H, or --home -H <dir> Provide a specific Geronimo home directory. This option is probably used if you start two or more Geronimo instances on your
server.

-J, or --javaopt -J <flag> Set a Java Virtual Machine (JVM) flag.

-P, or --profile -P <name> Select a configuration profile.

-b, or --
background

-b If provided, the server process will run in the background.

-j, or --jvm -j <dir> Use a specific JVM for the server process.

-l, or --logfile -l <file> Capture the console output to a log file.

-q, or --quiet -q Suppress warning and informative message.

-t, or --timeout -t <time> Identify the timeout in seconds.

-v, or --verbose -v Enable verbose output, resulting in more console output than is normally present.

Connecting to an already running server

GShell allows you to run a series of commands on a remote server. To do that you first need to connect to the remote server. The deploy/connect
command can be used to connect to an instance of Geronimo that is already running.

https://cwiki.apache.org/confluence/display/GMOxDOC22/Creating+deployment+plans

deploy/connect -u <user> -w <password> -s <server hostname> -p <port> --secure

See for information about the options of this command.general options

The command can be used to disconnect from an already connected server. Since only one instance of the server can be connected deploy/disconnect
at a time, no additional options are needed to specify which server to disconnect from. If you are trying to connect to a second server instance, use this
command to disconnect first.

Saving the username and password for current connection

Gshell allows you to save your credential after connecting to a running server. Simply specify your username and password with , and you deploy/login
will not be bothered with inputting your credential repeatedly. This command behaves in the same way as command option of .login deploy

deploy/login -u <user> -w <password> -s <server hostname> -p <port>

See for information about the options of this command.general options

Deploying modules

The command can be used to deploy a module to a server that you have previously connected to as mentioned in deploy/deploy connecting to an already
. If no existing connection is available, the command will first establish a connection and then execute the specific command. running server deploy/deploy

Once deployed, a module is identified by its module ID within Geronimo. The command has the following syntax:deploy/deploy

deploy/deploy <module> <deployment plan> -u <user> -w <password> -s <server hostname> -p <port> -t <target1;
target2> -i --secure

A file can be one of the following:module

J2EE Enterprise Application Archive (EAR) file
J2EE Web Application Archive (WAR) file
J2EE Enterprise JavaBean Archive (JAR) file
J2EE Java Resource Archive (RAR) file

If the deployment plan for a WAR file is not in the WEB-INF directory, its location must be specified after the module in the command.

Option Usage Description

-i, or --
inPlace

-i Can be used to specify an in-place deployment from the directory you are actually developing the application.

-t, or --
targets

-t <target1;
target2>

Can be used to specify the repository targets to which the module should be deployed. You can to get a list of targets list targets
available on the Geronimo server.

If the option is provided, the path to the application would need to be provided in place of the location of the module. See for information -i general options
about the other options of this command.

Redeploying modules

The command is used to deploy a newer version of a module onto a server where the older module is already deployed. It functions in a deploy/redeploy
similar way to but lacks an deployment option. deploy/deploy in-place
The command has the following syntax:deploy/redeploy

deploy/redeploy <module> <deployment plan> <module_id> -u <user> -w <password> -s <server hostname> -p <port> --
secure

If you do not specify the , the plan supplied (or plan inside the module) will be used to determine the actual configuration that you wish to module_id
redeploy. Redeploying a plan with an existing module ID allows you to modify the configuration of a running module without intermediate undeployment.
See for information about the options of this command.general options

Undeploying modules

The command is used to properly remove a module from a server. Once undeployed, the module cannot be started again, unless you deploy/undeploy
use the deploy command again. The module id must be provided for the module you wish to undeploy.

deploy/undeploy -u <user> -w <password> -s <server hostname> -p <port> <module_id> --secure

https://cwiki.apache.org/confluence/display/GMOxDOC22/deploy#deploy-Logincommandandoptions
https://cwiki.apache.org/confluence/display/GMOxDOC22/deploy

See for information about the options of this command.general options

Distributing modules

The command works exactly like except the module is not started once it has been deployed into the server and is not deploy/distribute deploy/deploy
marked to be started each time the server starts. The command can be issued in the same way, with the same options, as . The option deploy/deploy -t
can be used to specify the repository targets to which the module should be distributed. You can to get a list of targets available on the list targets
Geronimo server. See for information about other options of this command.general options

deploy/distribute <module> <deployment plan> -u <user> -w <password> -s <server hostname> -p <port> -i -t
<target1;target2> --secure

Starting modules

The command starts a previously deployed module that is not running, and uses this syntax:deploy/start

deploy/start -u <user> -w <password> -s <server hostname> -p <port> <module_id> --secure

See for information about the options of this command.general options

Stopping modules

The command stops a running module, and uses this syntax:deploy/stop

deploy/stop -u <user> -w <password> -s <server hostname> -p <port> <module_id> --secure

The command can be issued with the same options, as .deploy/start

Restarting modules

The command ommand restart a module that is already running, or a previously stopped module.deploy/restart

deploy/restart -u <user> -w <password> -s <server hostname> -p <port> <module_id> --secure

The command can be issued with the same options, as .deploy/start

Listing modules

The command lists available modules on an active server, and uses this syntax:deploy/list-modules

deploy/list-modules -u <user> -w <password> -s <server hostname> -p <port> --securefilterOptions

where

${renderedContent}
${renderedContent}

By default, all started or stopped modules are displayed. Any started modules are shown with a "+" sign next to them. All Webtier modules that have a
externally accessible URL associated with them will also have this URL shown next to the module. Running modules are represented by their module IDs
in Geronimo. See for information about other options of this command.general options

Listing targets

The command lists available targets on an active server, and uses this syntax:deploy/list-targets

deploy/list-targets -u <user> -w <password> -s <server hostname> -p <port> --secure

See for information about the options of this command.general options

Listing plug-ins

The command lists available configurations on an active server, and uses this syntax:deploy/list-plugins

deploy/list-plugins -u <user> -w <password> -s <server hostname> -p <port> -r <repository> -rr -rl --secure

The options are explainied in the following table:

Option Usage Description

-rr, or --refresh-repository -rr Refresh the repository.

-rl, or --refresh-list -rl Refresh the plug-in list.

-r, or --repository -r <repository> Can be used to provide the repository URL.

This command lists server plugins suitable for installation on your configured server, and will allow you to select them to be downloaded and installed. See
 for information about other options of this command.general options

Installing libraries

The command can be used to install a library, and uses this syntax:deploy/install-library

deploy/install-library <libraryFile> -g <groupId> -u <user> -w <password> -s <server hostname> -p <port> --
secure

where specifies the library file, usually a JAR. If the file name is not in a Maven recognizable format, you have to rename it following this format:libraryFile

<artifactId>-<version>.<type>

The options are explainied in the following table:

Option Usage Description

-g, or --groupId -g <groupId> Can be used to specify the group ID of the library.

See for information about other options of this command.general options

If successfully installed, the library will be found in , where is the server's installation directory.<geronimo_home>/repository <geronimo_home>

Installing a plug-in

The command can be used to install a plug-in (must be a CAR file) on the active server, and uses this syntax:deploy/install-plugin

deploy/install-plugin <plugin> -u <user> -w <password> -s <server hostname> -p <port> --secure

where specifies the plug-in to be installed. See for information about the options of this command.plugin general options

Assembling

The command can be used to extract a customer Geronimo server from the current one.deploy/assemble

deploy/assemble -a <artifact> -f <format> -g <groupId> -l -p <port> -s <server hostname> -t <path> -u <user> -w
<password>
-s <server hostname> -p <port> --secure

The options are explained in the following table:

Option Usage Description

-a, or --artifact -a <artifact> Can be used to provide the server artifact name.

-f, or --format -f <format> Can be used to specify if the assembly is in .zip or tar.gz format.

-g, or --
groupId

-g
<groupId>

Can be used to specify the group ID of the library.

-t, or --path -t <path> Can be used to provide the assembly location, where your specific plug-ins are stored. The default location is <geronimo_home>/var
/temp/

-l, or --list -l Can be used to refresh the plug-in list.

See for information about other options of this command.general options

Your successfully assembled server will be found in , where is the server's installation directory.<geronimo_home>/var/temp <geronimo_home>

Creating a new instance

The command can be used to creating a new server instance from the current one, and uses this syntax:deploy/new-instance

deploy/new-instance <SERVER_NAME> -u <user> -w <password> -s <server hostname> -p <port> --secure

where is the name of the new instance. Look into for more information about how to initiate the SERVER_NAME Running Multiple Geronimo Instances
new instance.

Connecting to a remote Gshell

This can be used to execute gshell commands on a remote Gshell server.remote/rsh

remote/rsh tcp://<REMOTEIP>:<PORT> <GShellCommand>

Where is the IP address on which the remote GShell server is running, is the listening port on the remote Gshell server and REMOTEIP PORT GShellCom
 is the command which can be executed in any GShell environment.mand

Starting a remote GShell

The command can be used to start a remote GShell session for listening on a port to accept requests from foreign address.remote/rsh-server

remote/rsh-server tcp://<LOCALIP>:<PORT>

where is the IP address of the GShell server, is the listening port that you can specify any unoccupied port number.LOCALIP PORT

Monitoring cluster heartbeat

The command can be used to monitor cluster heartbeat when you enabled .cluster/heartbeat plugin based Farming

cluster/heartbeat -f <Regex>

where is the regular expression to filter heartbeat data displayed. You can use other than option.Regex --filter -f

Administering cluster

The command can be used to deploy/undeploy a plugin or a list of plugins on a specified cluster. This command is only workable when you cluster/deploy
enabled and performed the command on a controller node.Plugin based Farming

cluster/deploy ACTION -c <clustername> -l <pluginlistname> -a <pluginartifactID>

The options are explained in the following table:

Option Usage Description

ACTION add/remove Action (add/remove) to perform

-c, or --cluster) -c <clustername> Can be used to specify name of the cluster to perform action on

-l, or --pluginlist -l <pluginlist> Can be used to specify name of the plugin List to perform action on

-a, or --pluginartifact -a <pluginartifactID> Can be used to specify name of the plugin to perform action on

See for information about other options of this command.general options

Generating WSDL file from class

https://cwiki.apache.org/confluence/display/GMOxDOC22/Running+Multiple+Geronimo+Instances
https://cwiki.apache.org/confluence/display/GMOxDOC22/Plugin+based+Farming
https://cwiki.apache.org/confluence/display/GMOxDOC22/Plugin+based+Farming

The command can be used to generate a WSDL file, wrapper bean, server side code and client side code from a Web service endpoint's jaxws/java2ws
implementation (SEI) class and associated types classes. It uses this syntax:

jaxws/java2ws -databinding <jaxb or aegis> -frontend <jaxws or simple> -wsdl -wrapperbean -client -server -ant -
wrapperbean -o
<output-file> -d <resource-directory> -s <source-directory> -classdir <compile-classes-directoty> -cp <class-
path> -soap12 -t
<target-namespace> -beans <pathname of the bean definition file> -servicename <service-name> -portname <port-
name> -address
<address> -createxsdimports -h -v -verbose -quiet <classname>

These options are described in the following table:

Option Usage Description

-help or -h -help or -h Can be used to obtain the help information.

--databinding -databinding <jaxb or aegis> Can be used to specify the data binding (jaxb or aegis). By default it is jaxb for jaxws frontend, and aegis for
simple frontend.

-frontend -frontend <jaxws or simple> Can be used tp specify the frontend. Jaxws and the simple frontend are supported.

-wsdl -wsdl Can be used to generate the WSDL file.

-client -client Can be used to generate client side code.

-server -server Can be used to generate server side code.

-ant -ant Can be used to generate an Ant script.build.xml

-
wrapperbean

-wrapperbean Can be used to generate the wrapper and fault bean.

-o -o <output-file> Can be used to specify the name of the generated WSDL file.

-d -d <resource-directory> Can be used to specify the directory in which the resource files are located. The wsdl file will be placed into this
directory by default.

-s -s <source-directory> Can be used to specify the directory in which the generated source files (wrapper bean ,fault bean ,client side or
server side code) are located.

-classdir -classdir <compile-classes-
directoty>

Can be used to specify the directory in which the generated sources are compiled into. If not specified, the files
are not compiled.

-cp -cp <class-path> Can be used to specify the SEI and types class search path of directories and zip/jar files.

-soap12 -soap12 Can be used to indicate that the generated WSDL is to include a SOAP 1.2 binding.

-t -t <target-namespace> Can be used to specify the target namespace in the generated WSDL file.

-beans -beans <pathname of the bean
definition file>

Can be used to specify the path and name of the generated bean definition file.

-servicename -servicename <service-name> Can be used to specify the value of the generated service element's name attribute.

-portname -portname <port-name> Can be used to specify the port name to use in the generated WSDL.

-address -address <address> Can be used to specify the port address.

-
createxsdimp
orts

-createxsdimports Can be used to output schemas to separate files and load them by imports instead of inlining them into the WSDL.

-v -v Can be used to obtain the version number.

-verbose -verbose Can be used to display comments during the code generation process.

-quiet -quiet Can be used to suppress comments during the code generation process.

<classname> <classname> Can be used to specify the name of the SEI class.

Generating JAX-WS artifacts from class

The command can be used to generate necessary portable artifacts for JAX-WS applications from Java classes. Unlike , this jaxws/wsgen jaxws/java2ws
command generates a WSDL file only when requested. It uses this syntax:

jaxws/wsgen -classpath <path> -cp <path> -d <directory> -extension -help -keep -r <directory> -verbose -version
-wsdl[:protocol]
 -servicename <name> -portname <name>

These options are described in the following table:

Option Usage Description

-
classpath
or -cp

-
classpath
<path>
or -cp
<path>

Can be used to specify the location of the service implementation class.

-d -d
<director
y>

Can be used to specify the directory in which the generated output files will be placed.

-
extension

-
extension

Can be used to allow custom extensions for functionality not specified by the JAX-WS specification. Use of the extensions can result in
applications that are not portable or do not interoperate with other implementations. Here is a list of the extentions available:

-XadditionalHearders
-Xauthfile
-Xbebug
-Xno-address-databindling
-Xnocompile

-help -help Can be used to obtain the help information.

-keep -keep Can be used to keep the generated source files.

-r -r
<director
y>

Can be used to specify the directory in which generated WSDL file is placed. This parameter is only used in conjunction with the -wsdl parameter.

-verbose -verbose Can be used to output messages about what the compiler is doing.

-version -version Can be used to obtain the version number. If you specify this option, only the version information will be output and normal command processing
will not occur.

-wsdl -wsd [:
protocol]

Can be used to direct wsgen to generate a WSDL file and is typically used by a developer to review a WSDL file before the endpoint is deployed.
By default, wsgen does not generate a WSDL file. The protocol can be used to specify the protocol used in the wsdl:binding, and is optional.
Valid values for protocol are soap 1.1 and Xsoap 1.2. The default value is soap 1.1. The Xsoap 1.2 value can only be used in conjunction with
the option.-extension

-
servicena
me

-
servicena
me
<name>

Can be used to specify a wsdl:service name to be generated in the WSDL file. This parameter is only used in conjunction with the -wsdl option.

Generating Java classes from WSDL

The command can be used to create Java SEI classes from WSDL, and uses this syntax:jaxws/wsdl2java

jaxws/wsdl2java -fe <front-end-name>* -db <data-binding-name>* -wv <wsdl-version> -p <[wsdl-namespace =]
package-name>* -sn
<service-name> -b <bindling-file-name> -catalog <catalog-file-name> -d <output-directory> -compile -classdir
<compile-classes-directory> -impl -server -client
-all -autoNameResolution -defaultValues<=class-name-for-DefaultValueProvider> -ant -nexclude <schema-namespace
[=java=package-
name]>* -exsh <<true,false>> -dns <<true,false>> -dex <<true,false>> -validate -keep -wsdllocation
<wsdlLocation> -xjc
<xjc-arguments> -noAddressBinding -h -v -verbose -quiet <wsdlurl>

These options are described in the following table:

Option Usage Description

-help or -
h

-help or -h Can be used to obtain the help information.

-fe -fe <frontend-name> Can be used to specify the frontend. By default it is JAXWS frontend. Currently only JAXWS frontend is supported.

-db -db <databinding-name> Can be used to specify the data binding. By default it is jaxb. Currently only JAXB databinding is supported.

-wv -wv <wsdl-version> Can be used to specify the wsdl version. By default it is WSDL 1.1. Currently only WSDL 1.1 version is supported.

-p -p <[wsdl-namespace =]
package-name>*

Can be used to specify zero or more package names for the generated code.

-sn -sn <service-name> Can be used to specify the WSDL service name for the generated code.

-b -b <bindling-file-name> Can be used to specify zero or more JAXWS or JAXB binding files. You can use spaces to separate more than one entry.

-catalog -catalog <catalog-file-
name>

Can be used to specify catalog file that maps the imported wsdl/schema.

-d -d <output-directory> Can be used to specify the directory into which the generated code files are written.

-compile -compile Can be used to compile generated Java files.

-classdir -classdir <compile-
classes-directory>

Can be used to specify the directory into which the compiled class files are written.

-impl -impl Can be used to generate starting point code for an implementation object.

-client -client Can be used to generate starting point code for a client mainline.

-server -server Can be used to generate starting point code for a server mainline.

-all -all Can be used to generate all starting point code: types, service proxy, service interface, server mainline, client mainline,
implementation object, and an Ant file.build.xml

-
autoNam
eResoluti
on

-autoNameResolution Can be used to automatically resolve naming conflicts without binding customizations.

-
defaultVal
ues

-defaultValues=
[DefaultValueProvider
impl]

Can be used to generate default values for the impl and client. You can also provide a custom default value provider. The
default provider is RandomValueProvider.

-ant -ant Can be used to generates the Ant file.build.xml

-nexclude -nexclude <schema-
namespace
[=java=package-name]>*

Can be used to ignore the specified WSDL schema namespace when generating code. This option can be specified multiple
times. Java package name used by types described in the excluded namespace(s) can also be specified. The java package
name is optional.

-exsh -exsh <<true,false>> Can be used to enable or disable processing of implicit SOAP headers (SOAP headers defined in the wsdl:binding but not wsdl:
portType section.) By default it is false.

-dns -dns <<true,false>> Can be used to enable or disable the loading of the default namespace package name mapping. Default is true and

http://www.w3.org/2005/08/addressing=org.apache.cxf.ws.addressing

namespace package mapping will be enabled.

-dex -dex <<true,false>> Can be used to enable or disable the loading of the default excludes namespace mapping. Default is true.

-validate -validate Can be used to enable validating the WSDL before generating the code.

-keep -keep Can be used to indicate that the code generator will not overwrite any preexisting files. You will be responsible for resolving any
resulting compilation issues.

-
wsdlLocat
ion

-wsdllocation
<wsdlLocation>

Can be used to specify the value of the @WebServiceClient annotation's wsdlLocation property.

-xjc -xjc <xjc-arguments> Can be used to specify a comma separated list of arguments that are passed directly to the XJC processor when using the
JAXB databinding. A list of available XJC plugins can be obtained using .-xjc-X

-
noAddres
sBinding

-noAddressBinding Can be used to direct the code generator to generate the older CXF proprietary WS-Addressing types instead of the JAX-WS
2.1 compliant WS-Addressing types.

-v -v Can be used to obtain the version number.

-verbose -verbose Can be used to display comments during the code generation process.

-queit -quiet Can be used to suppress comments during the code generation process.

<wsdlurl> <wsdlurl> Can be used to specify the path and name of the WSDL file in generating the code.

Generating JAX-WS artifacts from WSDL

The command can be used to generates the required portable artifacts for JAX-WS Web service applications from an existing WSDL file. jaxws/wsimport
It uses this syntax:

jaxws/wsimport -b <path> -B <jaxbOption> -catalog <file> -d <directory> -extension -help -httpproxy:<host>:
<port> -keep -p <pkg>
-quiet -s <directory> -target <version> -verbose -version -wsdllocation <location>

These options are described in the following table:

Option Usage Description

-b <path> Can be used to specify the external JAX-WS or JAXB binding files. You can specify multiple JAX-WS and JAXB binding files by using the -b
option; however, each file must be specified with its own -b option.

http://www.w3.org/2005/08/addressing=org.apache.cxf.ws.addressing

-B -B
<jaxbOption>

Can be passed to JAXB schema complier.

-catalog -catalog
<file>

Can be used to specify the catalog file that resolves external entity references. It supports TR9401, XCatalog, and OASIS XML Catalog
formats.

-d <directory> Can be used to specify the directory in which the generated output files are placed.

-
extension

-extension Can be used to allow custom extensions for functionality that are not specified by the JAX-WS specification. The use of custom extensions
can result in applications that are not portable or do not interoperate with other implementations.

-help -help Can be used to obtain the help information.

-httpproxy -httpproxy:
<host>:
<port>

Can be used to specify an HTTP proxy. The default port value is 8080.

-keep -keep Can be used to keep the generated source files.

-p -p <pkg> Can be used to specify a target package with this command-line option and overrides any WSDL file and schema binding customization for
the package name and the default package name algorithm defined in the JAX-WS specification.

-s -s <directory> Can be used to specify the directory in which the generated source files are placed.

-target -target
<version>

Can be used to specify the version of JAXWS specification in generating the code.

-verbose -verbose Can be used to output messages about what the compiler is doing.

-version -version Can be used to obtain the version information. If you specify this option, only the version information is included in the output and normal
command processing does not occur.

-
wsdlLocat
ion

-wsdllocation
<location>

Can be used to specify the @WebServiceClient.wsdlLocation value.

	Geronimo GShell Commands

