
1.  
2.  

1.  
2.  
3.  

1.  
2.  
3.  

User Authentication
User Authentication
Status: NOT IMPLEMENTED 
Created: 14. March 2010
Author: fmeschbe 
JIRA: – 
References: Merging Sling API and Commons Auth API
Update: fmeschbe/27. September 2013

Update
Introduction
Proposal

Complete Steps Authenticating HTTP Requests
Issues

Update

This concept is not being implemented because in the meantime  services have been introduced which can be flagged as ResourceProviderFactory
being mandatory and thus validate credentials from authentication handlers. One such implementation is the JCR Resource Provider which does exactly 
that and internally validates the credentials by create a JCR Session.

Introduction

With the recent introduction of the Commons Auth Bundle and the current approach to break apart the dependency on JCR API from the Commons Auth 
Bundle we are faced with an issue of how to authenticate an HTTP request user while at the same time not binding the authentication mechanism to any 
data repository.

In other words we have the following requirements:

Extract user authentication information from HTTP requests and assert the identity of the requesting entity (remote user or application)
Setup a connection to data repository on behalf of the authenticated user

Currently the Commons Auth bundle controls the complete process of extracting authentication information, asserting the identity and connecting to the 
repository:

Authentication information extraction using  servicesAuthenticationHandler
Asserting identity by using the authentication information to login to the JCR Repository resulting in a JCR Session.
Connecting to the data repository by using the  to create a  on top of the JCR Session.JcrResourceResolverFactory ResourceResolver

The problem here is, that the Commons Auth bundle is tied into using the JCR Repository to assert identities and into the JcrResourceResolverFactory
to connect to the data repository.

These dependencies are not entirely optimal. So a first improvement might be for the Commons Auth bundle to validate any authentication and pass the 
validated authentication info on the ot Commons Auth client which then uses this data to create the connection:

Commons Auth extracts authentication information using  servicesAuthenticationHandler
Commons Auth asserts the identity using the authentication information to login to the JCR Repository
Commons Auth returns the asserted authentication information to (say) the Sling Main Servlet which uses the  to ResourceResolverFactory
connect to the repository and return a ResourceResolver

The drawback here is, that (a) Commons Auth is stilled tied into the JCR API and (b) JCR Sessions are created twice thus creating quite a considerable 
overhead.

Proposal

A new service API is defined supporting the validation of credentials:

http://markmail.org/message/xmgenhm3rvualvyq


1.  
2.  
3.  
4.  
5.  
6.  
7.  

8.  
9.  

10.  
11.  

12.  
13.  
14.  

public interface CredentialValidator {

    /** 
     * Validates the credentials and returns an AuthenticationInfo
     * object representing the validated credentials.
     * The implementation may return a new object or the same as
     * passed as a parameter. If a new object is returned the
     * implementation may copy some or all properties from the
     * passed in object.
     * The passed in AuthenticationInfo object should be considered
     * immutable by the implementation.
     * @param credentials The AuthenticationInfo representing the
     *      credentials provided by the user in the HTTP request.
     * @return An AuthenticationInfo object representing the
     *      validated credentials.
     * @throws LoginException if the passed credentials cannot
     *      be validated.
     * @throws NullPointerException if credentials is null
     */
    public AuthenticationInfo validate(AuthenticationInfo credentials) throws LoginException;

}

The  class makes use of the  service to validate the credentials extracted by SlingAuthenticator CredentialValidator AuthenticationHandler
services. The returned AuthenticationInfo is then set as a request attribute.

The  interface is implemented and registered as a service by the JCR based  implementation. The CredentialValidator ResourceResolverFactory
implementation of the method uses the credentials to authenticate with the JCR repository and returns an AuthenticationInfo object copied from the original 
object without the password but containing the JCR Session.

The  gets the  object from the request attribute and passes it (as a ) to the SlingMainServlet AuthenticationInfo Map ResourceResolverFactor
 method to get the  for the request.y.getResourceResolver(Map) ResourceResolver

The JCR based  knows about the  implementation and can ResourceResolverFactory.getResourceResolver(Map) CredentialValidator
make use of the  object in the map to reuse the existing session.Session

Complete Steps Authenticating HTTP Requests

Requests are authenticated as follows:

Client makes HTTP Request
OSGi HTTP Service selects Sling to handle request and calls HttpContext.handleSecurity
Sling's  method calls handleSecurity SlingAuthenticator.handleSecurity
SlingAuthenticator extractes  by calling AuthenticationInfo AuthenticationHandler.extractCredentials
SlingAuthenticator passes  to AuthenticationInfo CredentialValidator.validate
(JCR based) CredentialValidator builds JCR Credentials from  and calls AuthenticationInfo Repository.login
CredentialValidator creates new AuthenticationInfo object copying all properties from input (except password) and setting the JCR  as Session
another property and returns
SlingAuthenticator sets new  as request attribute and sets remaining required request attributes and returnsAuthenticationInfo
Sling's  returns successfullyhandleSecurity
OSGi HTTP Service passes control to SlingMainServlet
SlingMainServlet extracts  from request attribute and calls  with AuthenticationInfo ResourceResolverFactory.getResourceResolver
this  (which actually extends )AuthenticationInfo Map
(JCR based) ResourceResolverFactory recognizes the existing JCR Session and creates and returns a ResourceResolver based on this session
SlingMainServlet continues request processing
Finally SlingMainServlet closes the ResourceResolver at the end of request processing

Issues

The JCR based  implementation creates a session, which may or may not be used and closed by users of the Sling Commons CredentialValidator
Auth  service. A mechanism must be implemented to ensure Sessions placed into the  by AuthenticationSupport AuthenticationInfo Credentia

 implementations are not left open and thus needlessly consume system resources.lValidator


	User Authentication

