
Netty

Netty Component

Available as of Camel 2.3

This component is deprecated. You should use .Netty4

The component in Camel is a socket communication component, based on the project.netty Netty

Netty is a NIO client server framework which enables quick and easy development of network applications such as protocol servers and clients.
Netty greatly simplifies and streamlines network programming such as TCP and UDP socket server.

This camel component supports both producer and consumer endpoints.

The Netty component has several options and allows fine-grained control of a number of TCP/UDP communication parameters (buffer sizes, keepAlives,
tcpNoDelay etc) and facilitates both In-Only and In-Out communication on a Camel route.

Maven users will need to add the following dependency to their for this component:pom.xml

xml<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-netty</artifactId> <version>x.x.x</version> <!-- use the same version as your
Camel core version --> </dependency>

URI format

The URI scheme for a netty component is as follows

netty:tcp://localhost:99999[?options] netty:udp://remotehost:99999/[?options]

This component supports producer and consumer endpoints for both TCP and UDP.

You can append query options to the URI in the following format, ?option=value&option=value&...

Options
confluenceTableSmall

Name Default
Value

Description

keepAlive true Setting to ensure socket is not closed due to inactivity

tcpNoDelay true Setting to improve TCP protocol performance

backlog Camel 2.9.6/2.10.4/2.11: Allows to configure a backlog for netty consumer (server). Note the backlog is just a best
effort depending on the OS. Setting this option to a value such as , or , tells the TCP stack how long the 200 500 1000
"accept" queue can be. If this option is not configured, then the backlog depends on OS setting.

broadcast false Setting to choose Multicast over UDP

connectTimeout 10000 Time to wait for a socket connection to be available. Value is in millis.

reuseAddress true Setting to facilitate socket multiplexing

sync true Setting to set endpoint as one-way or request-response

synchronous false Camel 2.10: Whether is not in use. then the is Asynchronous Routing Engine false Asynchronous Routing Engine
used, to force processing synchronous.true

ssl false Setting to specify whether SSL encryption is applied to this endpoint

sslClientCert
Headers

false Camel 2.12: When enabled and in SSL mode, then the Netty consumer will enrich the Camel with headers Message
having information about the client certificate such as subject name, issuer name, serial number, and the valid date
range.

sendBufferSize 65536
bytes

The TCP/UDP buffer sizes to be used during outbound communication. Size is bytes.

receiveBuffer
Size

65536
bytes

The TCP/UDP buffer sizes to be used during inbound communication. Size is bytes.

option.XXX null Camel 2.11/2.10.4: Allows to configure additional netty options using "option." as prefix. For example "option.child.
keepAlive=false" to set the netty option "child.keepAlive=false". See the Netty documentation for possible options that
can be used.

corePoolSize 10 The number of allocated threads at component startup. Defaults to 10. This option is removed from Camel 2.9.2 Note:
onwards. As we rely on Nettys default settings.

https://cwiki.apache.org/confluence/display/CAMEL/Netty4
http://netty.io/
https://cwiki.apache.org/confluence/display/CAMEL/Asynchronous+Routing+Engine
https://cwiki.apache.org/confluence/display/CAMEL/Asynchronous+Routing+Engine
https://cwiki.apache.org/confluence/display/CAMEL/Message

maxPoolSize 100 The maximum number of threads that may be allocated to this endpoint. Defaults to 100. This option is removed Note:
from Camel 2.9.2 onwards. As we rely on Nettys default settings.

disconnect false Whether or not to disconnect(close) from Netty Channel right after use. Can be used for both consumer and producer.

lazyChannelCr
eation

true Channels can be lazily created to avoid exceptions, if the remote server is not up and running when the Camel
producer is started.

transferExcha
nge

false Only used for TCP. You can transfer the exchange over the wire instead of just the body. The following fields are
transferred: In body, Out body, fault body, In headers, Out headers, fault headers, exchange properties, exchange
exception. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at
WARN level.

disconnectOnN
oReply

true If sync is enabled then this option dictates NettyConsumer if it should disconnect where there is no reply to send back.

noReplyLogLev
el

WARN If sync is enabled this option dictates NettyConsumer which logging level to use when logging a there is no reply to
send back. Values are: .FATAL, ERROR, INFO, DEBUG, OFF

serverExcepti
onCaughtLogLe
vel

WARN Camel 2.11.1: If the server (NettyConsumer) catches an exception then its logged using this logging level.

serverClosedC
hannelExcepti
onCaughtLogLe
vel

DEBUG Camel 2.11.1: If the server (NettyConsumer) catches an then java.nio.channels.ClosedChannelException
its logged using this logging level. This is used to avoid logging the closed channel exceptions, as clients can
disconnect abruptly and then cause a flod of closed exceptions in the Netty server.

allowDefaultC
odec

true Camel 2.4: The netty component installs a default codec if both, encoder/deocder is null and textline is false. Setting
allowDefaultCodec to false prevents the netty component from installing a default codec as the first element in the filter
chain.

textline false Camel 2.4: Only used for TCP. If no codec is specified, you can use this flag to indicate a text line based codec; if not
specified or the value is false, then Object Serialization is assumed over TCP.

delimiter LINE Camel 2.4: The delimiter to use for the textline codec. Possible values are and .LINE NULL

decoderMaxLin
eLength

1024 Camel 2.4: The max line length to use for the textline codec.

autoAppendDel
imiter

true Camel 2.4: Whether or not to auto append missing end delimiter when sending using the textline codec.

encoding null Camel 2.4: The encoding (a charset name) to use for the textline codec. If not provided, Camel will use the JVM
default Charset.

workerCount null Camel 2.9: When netty works on nio mode, it uses default workerCount parameter from Netty, which is
cpu_core_threads*2. User can use this operation to override the default workerCount from Netty

sslContextPar
ameters

null Camel 2.9: SSL configuration using an instance. See org.apache.camel.util.jsse.SSLContextParameters
.Using the JSSE Configuration Utility

receiveBuffer
SizePredictor

null Camel 2.9: Configures the buffer size predictor. See details at Jetty documentation and this .mail thread

requestTimeout 0 Camel 2.11.1: Allows to use a timeout for the Netty producer when calling a remote server. By default no timeout is in
use. The value is in milli seconds, so eg is 30 seconds. The requestTimeout is using Netty's 30000
ReadTimeoutHandler to trigger the timeout. you can also override this setting by setting the Camel 2.16, 2.15.3
CamelNettyRequestTimeout header.

needClientAuth false Camel 2.11: Configures whether the server needs client authentication when using SSL.

orderedThread
PoolExecutor

true Camel 2.10.2: Whether to use ordered thread pool, to ensure events are processed orderly on the same channel. See
details at the netty javadoc of org.jboss.netty.handler.execution.

 for more details.OrderedMemoryAwareThreadPoolExecutor

maximumPoolSi
ze

16 Camel 2.10.2: The core pool size for the ordered thread pool, if its in use.

Since Camel 2.14.1: This option is move the NettyComponent.

producerPoolE
nabled

true Camel 2.10.4/Camel 2.11: Producer only. Whether producer pool is enabled or not. Do not turn this off, as Important:
the pooling is needed for handling concurrency and reliable request/reply.

producerPoolM
axActive

-1 Camel 2.10.3: Producer only. Sets the cap on the number of objects that can be allocated by the pool (checked out to
clients, or idle awaiting checkout) at a given time. Use a negative value for no limit.

producerPoolM
inIdle

0 Camel 2.10.3: Producer only. Sets the minimum number of instances allowed in the producer pool before the evictor
thread (if active) spawns new objects.

http://lists.jboss.org/pipermail/netty-users/2010-January/001958.html

producerPoolM
axIdle

100 Camel 2.10.3: Producer only. Sets the cap on the number of "idle" instances in the pool.

producerPoolM
inEvictableId
le

300000 Camel 2.10.3: Producer only. Sets the minimum amount of time (value in millis) an object may sit idle in the pool
before it is eligible for eviction by the idle object evictor.

bootstrapConf
iguration

null Camel 2.12: Consumer only. Allows to configure the Netty ServerBootstrap options using a org.apache.camel.
 instance. This can be used to reuse the same component.netty.NettyServerBootstrapConfiguration

configuration for multiple consumers, to align their configuration more easily.

bossPoll null Camel 2.12: To use a explicit as the boss thread pool. For org.jboss.netty.channel.socket.nio.BossPool
example to share a thread pool with multiple consumers. By default each consumer has their own boss pool with 1
core thread.

workerPool null Camel 2.12: To use a explicit as the worker thread pool. org.jboss.netty.channel.socket.nio.WorkerPool
For example to share a thread pool with multiple consumers. By default each consumer has their own worker pool with
2 x cpu count core threads.

channelGroup null To use a explicit Camel 2.17 io.netty.channel.group.ChannelGroup for example to broadact a message to
multiple channels.

networkInterf
ace

null Camel 2.12: Consumer only. When using UDP then this option can be used to specify a network interface by its name,
such as to join a multicast group.eth0

udpConnection
lessSending

false Camel 2.15: Producer only. This option supports connection less udp sending which is a real fire and forget. A
connected udp send receive the PortUnreachableException if no one is listen on the receiving port.

clientMode false Camel 2.15: Consumer only. If the is true, netty consumer will connect the address as a TCP client.clientMode

useChannelBuf
fer

false Camel 2.16: Producer only. If the is true, netty producer will turn the message body into useChannelBuffer
channelBuffer before sending it out.

Registry based Options

Codec Handlers and SSL Keystores can be enlisted in the , such as in the Spring XML file.Registry
The values that could be passed in, are the following:

confluenceTableSmall

Name Description

passphrase password setting to use in order to encrypt/decrypt payloads sent using SSH

keyStoreFo
rmat

keystore format to be used for payload encryption. Defaults to "JKS" if not set

securityPr
ovider

Security provider to be used for payload encryption. Defaults to "SunX509" if not set.

keyStoreFi
le

deprecated: Client side certificate keystore to be used for encryption

trustStore
File

deprecated: Server side certificate keystore to be used for encryption

keyStoreRe
source

Camel 2.11.1: Client side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with "cl
, , or to load the resource from different systems.asspath:" "file:" "http:"

trustStore
Resource

Camel 2.11.1: Server side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with "c
, , or to load the resource from different systems.lasspath:" "file:" "http:"

sslHandler Reference to a class that could be used to return an SSL Handler

encoder A custom class that can be used to perform special marshalling of outbound payloads. Must override ChannelHandler org.jboss.
.netty.channel.ChannelDownStreamHandler

encorders A list of encoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the R
. Just remember to prefix the value with # so Camel knows it should lookup.egistry

decoder A custom class that can be used to perform special marshalling of inbound payloads. Must override ChannelHandler org.jboss.
.netty.channel.ChannelUpStreamHandler

decoders A list of decoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the R
. Just remember to prefix the value with # so Camel knows it should lookup.egistry

Important: Read below about using non shareable encoders/decoders.

https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry

Using non shareable encoders or decoders

If your encoders or decoders is not shareable (eg they have the @Shareable class annotation), then your encoder/decoder must implement the org.
 interface, and return a new instance in the method. This is to apache.camel.component.netty.ChannelHandlerFactory newChannelHandler

ensure the encoder/decoder can safely be used. If this is not the case, then the Netty component will log a WARN when
an endpoint is created.

The Netty component offers a factory class, that has a number of commonly org.apache.camel.component.netty.ChannelHandlerFactories
used methods.

Sending Messages to/from a Netty endpoint

Netty Producer

In Producer mode, the component provides the ability to send payloads to a socket endpoint
using either TCP or UDP protocols (with optional SSL support).

The producer mode supports both one-way and request-response based operations.

Netty Consumer

In Consumer mode, the component provides the ability to:

listen on a specified socket using either TCP or UDP protocols (with optional SSL support),
receive requests on the socket using text/xml, binary and serialized object based payloads and
send them along on a route as message exchanges.

The consumer mode supports both one-way and request-response based operations.

Headers

The following headers are filled for the exchanges created by the Netty consumer:

confluenceTableSmall

Header key Class Description

NettyConstants.NETTY_CHANNEL_HANDLER_CONTEXT
/ CamelNettyChannelHandlerContext

org.jboss.netty.channel.
ChannelHandlerContext

ChannelHandlerContext instance associated
with the connection received by netty.

NettyConstants.NETTY_MESSAGE_EVENT / CamelNett
yMessageEvent

Meorg.jboss.netty.channel.
ssageEvent

instance associated with the MessageEvent
connection received by netty.

NettyConstants.NETTY_REMOTE_ADDRESS / CamelNet
tyRemoteAddress

java.net.SocketAddress Remote address of the incoming socket
connection.

NettyConstants.NETTY_LOCAL_ADDRESS / CamelNett
yLocalAddress

java.net.SocketAddress Local address of the incoming socket connection.

Usage Samples

A UDP Netty endpoint using Request-Reply and serialized object payload
RouteBuilder builder = new RouteBuilder() { public void configure() { from("netty:udp://localhost:5155?sync=true") .process(new Processor() { public void
process(Exchange exchange) throws Exception { Poetry poetry = (Poetry) exchange.getIn().getBody(); poetry.setPoet("Dr. Sarojini Naidu"); exchange.
getOut().setBody(poetry); } } } };

A TCP based Netty consumer endpoint using One-way communication
RouteBuilder builder = new RouteBuilder() { public void configure() { from("netty:tcp://localhost:5150") .to("mock:result"); } };

An SSL/TCP based Netty consumer endpoint using Request-Reply communication

Using the JSSE Configuration Utility

As of Camel 2.9, the Netty component supports SSL/TLS configuration through the . This utility greatly decreases the Camel JSSE Configuration Utility
amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how
to use the utility with the Netty component.

Programmatic configuration of the component
KeyStoreParameters ksp = new KeyStoreParameters(); ksp.setResource("/users/home/server/keystore.jks"); ksp.setPassword("keystorePassword");
KeyManagersParameters kmp = new KeyManagersParameters(); kmp.setKeyStore(ksp); kmp.setKeyPassword("keyPassword"); SSLContextParameters
scp = new SSLContextParameters(); scp.setKeyManagers(kmp); NettyComponent nettyComponent = getContext().getComponent("netty",
NettyComponent.class); nettyComponent.setSslContextParameters(scp);

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Configuration+Utilities

Spring DSL based configuration of endpoint
xml... <camel:sslContextParameters id="sslContextParameters"> <camel:keyManagers keyPassword="keyPassword"> <camel:keyStore resource="/users
/home/server/keystore.jks" password="keystorePassword"/> </camel:keyManagers> </camel:sslContextParameters>... ... <to uri="netty:tcp://localhost:
5150?sync=true&ssl=true&sslContextParameters=#sslContextParameters"/> ...

Using Basic SSL/TLS configuration on the Jetty Component
JndiRegistry registry = new JndiRegistry(createJndiContext()); registry.bind("password", "changeit"); registry.bind("ksf", new File("src/test/resources
/keystore.jks")); registry.bind("tsf", new File("src/test/resources/keystore.jks")); context.createRegistry(registry); context.addRoutes(new RouteBuilder() {
public void configure() { String netty_ssl_endpoint = "netty:tcp://localhost:5150?sync=true&ssl=true&passphrase=#password" +
"&keyStoreFile=#ksf&trustStoreFile=#tsf"; String return_string = "When You Go Home, Tell Them Of Us And Say," + "For Your Tomorrow, We Gave Our
Today."; from(netty_ssl_endpoint) .process(new Processor() { public void process(Exchange exchange) throws Exception { exchange.getOut().setBody
(return_string); } } } });

Getting access to SSLSession and the client certificate

Available as of Camel 2.12

You can get access to the if you eg need to get details about the client certificate. When then the javax.net.ssl.SSLSession ssl=true Netty
component will store the as a header on the Camel as shown below:SSLSession Message

SSLSession session = exchange.getIn().getHeader(NettyConstants.NETTY_SSL_SESSION, SSLSession.class); // get the first certificate which is client
certificate javax.security.cert.X509Certificate cert = session.getPeerCertificateChain()[0]; Principal principal = cert.getSubjectDN();

Remember to set to authenticate the client, otherwise cannot access information about the client certificate, and needClientAuth=true SSLSession
you may get an exception . You may also get this exception if the javax.net.ssl.SSLPeerUnverifiedException: peer not authenticated
client certificate is expired or not valid etc.

The option can be set to which then enriches the Camel with headers having details about the client certificate. sslClientCertHeaders true Message
For example the subject name is readily available in the header .CamelNettySSLClientCertSubjectName

Using Multiple Codecs

In certain cases it may be necessary to add chains of encoders and decoders to the netty pipeline. To add multpile codecs to a camel netty endpoint the
'encoders' and 'decoders' uri parameters should be used. Like the 'encoder' and 'decoder' parameters they are used to supply references (to lists of
ChannelUpstreamHandlers and ChannelDownstreamHandlers) that should be added to the pipeline. Note that if encoders is specified then the encoder
param will be ignored, similarly for decoders and the decoder param.

Read further above about using non shareable encoders/decoders.

The lists of codecs need to be added to the Camel's registry so they can be resolved when the endpoint is created.{snippet:id=registry-
Spring's native beans|lang=java|url=camel/trunk/components/camel-netty/src/test/java/org/apache/camel/component/netty/MultipleCodecsTest.java}

collections support can be used to specify the codec lists in an application context{snippet:id=registry-beans|lang=xml|url=camel/trunk/components/camel-
The bean names can then be used in netty endpoint definitions either as a netty/src/test/resources/org/apache/camel/component/netty/multiple-codecs.xml}

comma separated list or contained in a List e.g.{snippet:id=routes|lang=java|url=camel/trunk/components/camel-netty/src/test/java/org/apache/camel
or via spring./component/netty/MultipleCodecsTest.java} {snippet:id=routes|lang=xml|url=camel/trunk/components/camel-netty/src/test/resources/org

/apache/camel/component/netty/multiple-codecs.xml}

Closing Channel When Complete

When acting as a server you sometimes want to close the channel when, for example, a client conversion is finished.
You can do this by simply setting the endpoint option .disconnect=true

However you can also instruct Camel on a per message basis as follows.
To instruct Camel to close the channel, you should add a header with the key set to a boolean value.CamelNettyCloseChannelWhenComplete true
For instance, the example below will close the channel after it has written the bye message back to the client:

from("netty:tcp://localhost:8080").process(new Processor() { public void process(Exchange exchange) throws Exception { String body = exchange.getIn().
getBody(String.class); exchange.getOut().setBody("Bye " + body); // some condition which determines if we should close if (close) { exchange.getOut().
setHeader(NettyConstants.NETTY_CLOSE_CHANNEL_WHEN_COMPLETE, true); } } });

Adding custom channel pipeline factories to gain complete control over a created pipeline

Available as of Camel 2.5

Custom channel pipelines provide complete control to the user over the handler/interceptor chain by inserting custom handler(s), encoder(s) & decoders
without having to specify them in the Netty Endpoint URL in a very simple way.

In order to add a custom pipeline, a custom channel pipeline factory must be created and registered with the context via the context registry (JNDIRegistry,
or the camel-spring ApplicationContextRegistry etc).

A custom pipeline factory must be constructed as follows

A Producer linked channel pipeline factory must extend the abstract class .ClientPipelineFactory
A Consumer linked channel pipeline factory must extend the abstract class .ServerPipelineFactory
The classes should override the getPipeline() method in order to insert custom handler(s), encoder(s) and decoder(s). Not overriding the
getPipeline() method creates a pipeline with no handlers, encoders or decoders wired to the pipeline.

https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message

The example below shows how ServerChannel Pipeline factory may be created

Using custom pipeline factorypublic class SampleServerChannelPipelineFactory extends ServerPipelineFactory { private int maxLineSize = 1024; public
ChannelPipeline getPipeline() throws Exception { ChannelPipeline channelPipeline = Channels.pipeline(); channelPipeline.addLast("encoder-SD", new
StringEncoder(CharsetUtil.UTF_8)); channelPipeline.addLast("decoder-DELIM", new DelimiterBasedFrameDecoder(maxLineSize, true, Delimiters.
lineDelimiter())); channelPipeline.addLast("decoder-SD", new StringDecoder(CharsetUtil.UTF_8)); // here we add the default Camel ServerChannelHandler
for the consumer, to allow Camel to route the message etc. channelPipeline.addLast("handler", new ServerChannelHandler(consumer)); return
channelPipeline; } }

The custom channel pipeline factory can then be added to the registry and instantiated/utilized on a camel route in the following way

Registry registry = camelContext.getRegistry(); serverPipelineFactory = new TestServerChannelPipelineFactory(); registry.bind("spf",
serverPipelineFactory); context.addRoutes(new RouteBuilder() { public void configure() { String netty_ssl_endpoint = "netty:tcp://localhost:5150?
serverPipelineFactory=#spf" String return_string = "When You Go Home, Tell Them Of Us And Say," + "For Your Tomorrow, We Gave Our Today."; from
(netty_ssl_endpoint) .process(new Processor() { public void process(Exchange exchange) throws Exception { exchange.getOut().setBody(return_string); }
} } });

Reusing Netty boss and worker thread pools

Available as of Camel 2.12

Netty has two kind of thread pools: boss and worker. By default each Netty consumer and producer has their private thread pools. If you want to reuse
these thread pools among multiple consumers or producers then the thread pools must be created and enlisted in the .Registry

For example using Spring XML we can create a shared worker thread pool using the with 2 worker threads as shown below:NettyWorkerPoolBuilder

xml <!-- use the worker pool builder to create to help create the shared thread pool --> <bean id="poolBuilder" class="org.apache.camel.component.netty.
NettyWorkerPoolBuilder"> <property name="workerCount" value="2"/> </bean> <!-- the shared worker thread pool --> <bean id="sharedPool" class="org.
jboss.netty.channel.socket.nio.WorkerPool" factory-bean="poolBuilder" factory-method="build" destroy-method="shutdown"> </bean>
For boss thread pool there is a builder for Netty consumers, and a org.apache.camel.component.netty.NettyServerBossPoolBuilder org.

 for the Netty produces.apache.camel.component.netty.NettyClientBossPoolBuilder

Then in the Camel routes we can refer to this worker pools by configuring the option in the as shown below:workerPool URI

xml <route> <from uri="netty:tcp://localhost:5021?textline=true&sync=true&workerPool=#sharedPool&orderedThreadPoolExecutor=false"/>
<to uri="log:result"/> ... </route>

And if we have another route we can refer to the shared worker pool:

xml <route> <from uri="netty:tcp://localhost:5022?textline=true&sync=true&workerPool=#sharedPool&orderedThreadPoolExecutor=false"/>
<to uri="log:result"/> ... </route>

... and so forth.

Endpoint See Also

Netty HTTP
MINA

https://cwiki.apache.org/confluence/display/CAMEL/Registry
#
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint+See+Also
https://cwiki.apache.org/confluence/display/CAMEL/Netty+HTTP
https://cwiki.apache.org/confluence/display/CAMEL/MINA

	Netty

