
Crypto

Crypto

Available as of Camel 2.3
PGP Available as of Camel 2.9

The Crypto integrates the Java Cryptographic Extension into Camel, allowing simple and flexible encryption and decryption of messages Data Format
using Camel's familiar marshall and unmarshal formatting mechanism. It assumes marshalling to mean encryption to cyphertext and unmarshalling to
mean decryption back to the original plaintext. This data format implements only symmetric (shared-key) encryption and decyption.

Options

Name Type Default Description

algorithm String DES/CBC
/PKCS5Padding

The JCE algorithm name indicating the cryptographic algorithm that will be used.

algorithmParame
terSpec

java.security.spec.
AlgorithmParameterSpec

null A JCE AlgorithmParameterSpec used to initialize the Cipher.

bufferSize Integer 4096 the size of the buffer used in the signature process.

cryptoProvider String null The name of the JCE Security Provider that should be used.

initializationV
ector

byte[] null A byte array containing the Initialization Vector that will be used to initialize the
Cipher.

inline boolean false Flag indicating that the configured IV should be inlined into the encrypted data
stream.

macAlgorithm String null The JCE algorithm name indicating the Message Authentication algorithm.

shouldAppendHMAC boolean null Flag indicating that a Message Authentication Code should be calculated and
appended to the encrypted data.

Basic Usage

At its most basic all that is required to encrypt/decrypt an exchange is a shared secret key. If one or more instances of the Crypto data format are
configured with this key the format can be used to encrypt the payload in one route (or part of one) and decrypted in another. For example, using the Java
DSL as follows:{snippet:id=basic|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/converter/crypto

In Spring the dataformat is configured first and then used in routes/CryptoDataFormatTest.java}

xml<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <dataFormats> <crypto id="basic" algorithm="DES" keyRef="desKey" /> <
/dataFormats> ... <route> <from uri="direct:basic-encryption" /> <marshal ref="basic" /> <to uri="mock:encrypted" /> <unmarshal ref="basic" /> <to uri="
mock:unencrypted" /> </route> </camelContext>

Specifying the Encryption Algorithm

Changing the algorithm is a matter of supplying the JCE algorithm name. If you change the algorithm you will need to use a compatible key.{snippet:
A list of the id=algorithm|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/converter/crypto/CryptoDataFormatTest.java}

available algorithms in Java 7 is available via the .Java Cryptography Architecture Standard Algorithm Name Documentation

Specifying an Initialization Vector

Some crypto algorithms, particularly block algorithms, require configuration with an initial block of data known as an Initialization Vector. In the JCE this is
passed as an AlgorithmParameterSpec when the Cipher is initialized. To use such a vector with the CryptoDataFormat you can configure it with a byte[]
containing the required data e.g.{snippet:id=init-vector|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/converter/crypto

or with spring, suppling a reference to a byte[]/CryptoDataFormatTest.java} {snippet:id=init-vector|lang=xml|url=camel/trunk/components/camel-crypto/src
The same vector is required in both the encryption and decryption /test/resources/org/apache/camel/component/crypto/SpringCryptoDataFormatTest.xml}

phases. As it is not necessary to keep the IV a secret, the DataFormat allows for it to be inlined into the encrypted data and subsequently read out in the
decryption phase to initialize the Cipher. To inline the IV set the /oinline flag.{snippet:id=inline-init-vector|lang=java|url=camel/trunk/components/camel-

or with spring.crypto/src/test/java/org/apache/camel/converter/crypto/CryptoDataFormatTest.java} {snippet:id=inline|lang=xml|url=camel/trunk/components
For more information of the use of Initialization /camel-crypto/src/test/resources/org/apache/camel/component/crypto/SpringCryptoDataFormatTest.xml}

Vectors, consult

http://en.wikipedia.org/wiki/Initialization_vector
http://www.herongyang.com/Cryptography/
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

Hashed Message Authentication Codes (HMAC)

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html
http://en.wikipedia.org/wiki/Initialization_vector
http://www.herongyang.com/Cryptography/
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

To avoid attacks against the encrypted data while it is in transit the CryptoDataFormat can also calculate a Message Authentication Code for the encrypted
exchange contents based on a configurable MAC algorithm. The calculated HMAC is appended to the stream after encryption. It is separated from the
stream in the decryption phase. The MAC is recalculated and verified against the transmitted version to insure nothing was tampered with in transit.For
more information on Message Authentication Codes see http://en.wikipedia.org/wiki/HMAC{snippet:id=hmac|lang=java|url=camel/trunk/components/camel-

or with spring.crypto/src/test/java/org/apache/camel/converter/crypto/CryptoDataFormatTest.java} {snippet:id=hmac|lang=xml|url=camel/trunk/components
By default the HMAC is calculated using the /camel-crypto/src/test/resources/org/apache/camel/component/crypto/SpringCryptoDataFormatTest.xml}

HmacSHA1 mac algorithm though this can be easily changed by supplying a different algorithm name. See for how to check what algorithms are here
available through the configured security providers{snippet:id=hmac-algorithm|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache

or with spring./camel/converter/crypto/CryptoDataFormatTest.java} {snippet:id=hmac-algorithm|lang=xml|url=camel/trunk/components/camel-crypto/src/test
/resources/org/apache/camel/component/crypto/SpringCryptoDataFormatTest.xml}

Supplying Keys Dynamically

When using a Recipient list or similar EIP the recipient of an exchange can vary dynamically. Using the same key across all recipients may neither be
feasible or desirable. It would be useful to be able to specify keys dynamically on a per exchange basis. The exchange could then be dynamically enriched
with the key of its target recipient before being processed by the data format. To facilitate this the DataFormat allow for keys to be supplied dynamically via
the message headers below

CryptoDataFormat.KEY "CamelCryptoKey"

{snippet:id=key-in-header|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/converter/crypto/CryptoDataFormatTest.
java}or with spring.{snippet:id=header-key|lang=xml|url=camel/trunk/components/camel-crypto/src/test/resources/org/apache/camel/component/crypto
/SpringCryptoDataFormatTest.xml}

PGP Message

The PGP Data Formater can create and decrypt/verify PGP Messages of the following PGP packet structure (entries in brackets are optional and ellipses
indicate repetition, comma represents sequential composition, and vertical bar separates alternatives):

 Public Key Encrypted Session Key ..., Symmetrically Encrypted Data | Sym. Encrypted and Integrity Protected Data, (Compressed Data,) (One Pass
Signature ...,) Literal Data, (Signature ...,)

Since Camel 2.16. the Compressed Data packet is optional, before it was mandatory.0

PGPDataFormat Options

Name Type Default Description

keyUse
rid

String null The user ID of the key in the PGP keyring used during encryption. See also option . Can also be only a part of a user ID. keyUserids
For example, if the user ID is "Test User <test@camel.com>" then you can use the part "Test User" or "<test@camel.com>" to
address the user ID.

keyUse
rids

List<S
tring>

null Since camel 2.12.2: PGP allows to encrypt the symmetric key by several asymmetric public receiver keys. You can specify here the
User IDs or parts of User IDs of several public keys contained in the PGP keyring. If you just have one User ID, then you can also use
the option . The User ID specified in and the User IDs in will be merged together and the keyUserid keyUserid keyUserids
corresponding public keys will be used for the encryption.

passwo
rd

String null Password used when opening the private key (not used for encryption).

keyFil
eName

String null Filename of the keyring; must be accessible as a classpath resource (but you can specify a location in the file system by using the
"file:" prefix).

encryp
tionKe
yRing

byte[] null Since camel 2.12.1: encryption keyring; you can not set the keyFileName and encryptionKeyRing at the same time.

signat
ureKey
Userid

String null Since Camel 2.11.0; optional User ID of the key in the PGP keyring used for signing (during encryption) or signature verification
(during decryption). During the signature verification process the specified User ID restricts the public keys from the public keyring
which can be used for the verification. If no User ID is specified for the signature verficiation then any public key in the public keyring
can be used for the verification. Can also be only a part of a user ID. For example, if the user ID is "Test User <test@camel.com>"
then you can use the part "Test User" or "<test@camel.com>" to address the User ID.

signat
ureKey
Userids

List<S
tring>

null Since Camel 2.12.3: optional list of User IDs of the key in the PGP keyring used for signing (during encryption) or signature
verification (during decryption). You can specify here the User IDs or parts of User IDs of several keys contained in the PGP keyring. If
you just have one User ID, then you can also use the option . The User ID specified in and the User IDs in keyUserid keyUserid key

 will be merged together and the corresponding keys will be used for the signing or signature verification. If the specified User Userids
IDs reference several keys then for each key a signature is added to the PGP result during the encryption-signing process. In the
decryption-verifying process the list of User IDs restricts the list of public keys which can be used for signature verification. If the list of
User IDs is empty then any public key in the public keyring can be used for the signature verification.

signat
urePas
sword

String null Since Camel 2.11.0: optional password used when opening the private key used for signing (during encryption).

http://en.wikipedia.org/wiki/HMAC
#

signat
ureKey
FileNa
me

String null Since Camel 2.11.0: optional filename of the keyring to use for signing (during encryption) or for signature verification (during
decryption); must be accessible as a classpath resource (but you can specify a location in the file system by using the "file:" prefix).

signat
ureKey
Ring

byte[] null Since camel 2.12.1: signature keyring; you can not set the signatureKeyFileName and signatureKeyRing at the same time.

algori
thm

int Symmetr
icKeyAl
gorithm
Tags.
CAST5

Since camel 2.12.2: symmetric key encryption algorithm; possible values are defined in org.bouncycastle.bcpg.
; for example 2 (= TRIPLE DES), 3 (= CAST5), 4 (= BLOWFISH), 6 (= DES), 7 (= AES_128). Only SymmetricKeyAlgorithmTags

relevant for encrypting.

compre
ssionA
lgorit
hm

int Compres
sionAlg
orithmT
ags.ZIP

Since camel 2.12.2: compression algorithm; possible values are defined in org.bouncycastle.bcpg.
; for example 0 (= UNCOMPRESSED), 1 (= ZIP), 2 (= ZLIB), 3 (= BZIP2). Only relevant for encrypting.CompressionAlgorithmTags

hashAl
gorithm

int HashAlg
orithmT
ags.
SHA1

Since camel 2.12.2: signature hash algorithm; possible values are defined in ; for org.bouncycastle.bcpg.HashAlgorithmTags
example 2 (= SHA1), 8 (= SHA256), 9 (= SHA384), 10 (= SHA512), 11 (=SHA224). Only relevant for signing.

armored boolean false This option will cause PGP to base64 encode the encrypted text, making it available for copy/paste, etc.

integr
ity

boolean true Adds an integrity check/sign into the encryption file.

passph
raseAc
cessor

PGPPas
sphras
eAcces
sor

null Since Camel 2.12.2: provides passphrases corresponding to user Ids. If no passpharase can be found from the option or password s
 and from the headers or ignaturePassword CamelPGPDataFormatKeyPassword CamelPGPDataFormatSignatureKeyPassw

 then the passphrase is fetched from the passphrase accessor. You provide a bean which implements the interface ord PGPPassphras
. A default implementation is given by . The passphrase accessor is especially useful in the eAccessor DefaultPGPPassphraseAccessor

decrypt case; see chapter 'PGP Decrypting/Verifying of Messages Encrypted/Signed by Different Private/Public Keys' below.

signat
ureVer
ificat
ionOpt
ion

String "option
al"

Since Camel 2.13.0: controls the behavior for verifying the signature during unmarshaling. There are three values possible:

"optional": The PGP message may or may not contain signatures; if it does contain signatures, then a signature verification is
executed. Use the constant PGPKeyAccessDataFormat.SIGNATURE_VERIFICATION_OPTION_OPTIONAL.
"required": The PGP message must contain at least one signature; if this is not the case an exception (PGPException) is
thrown. A signature verification is executed. Use the constant PGPKeyAccessDataFormat.
SIGNATURE_VERIFICATION_OPTION_REQUIRED.
"ignore": Contained signatures in the PGP message are ignored; no signature verification is executed. Use the constant
PGPKeyAccessDataFormat.SIGNATURE_VERIFICATION_OPTION_IGNORE.
"no_signature_allowed": The PGP message must not contain a signature; otherwise an exception (PGPException) is
thrown. Use the constant PGPKeyAccessDataFormat.SIGNATURE_VERIFICATION_OPTION_NO_SIGNATURE_ALLOWED.

FileNa
me

String "_CONSO
LE"

Since camel 2.15.0: Sets the file name for the literal data packet. Can be overwritten by the header {@link Exchange#FILE_NAME}.

" " indicates that the message is considered to be "for your eyes only". This advises that the message data is unusually _CONSOLE
sensitive, and the receiving program should process it more carefully, perhaps avoiding storing the received data to disk, for example.
Only used for marshaling.

withCo
mpress
edData
Packet

boolean true Since Camel 2.16.0: Indicator whether the PGP Message shall be created with or without a Compressed Data packet. If the value is
set to false, then no Compressed Data packet is added and the compressionAlgorithm value is ignored. Only used for marshaling.

PGPDataFormat Message Headers

You can override the PGPDataFormat options by applying below headers into message dynamically.

Name Type Description

CamelPGPDataFormatKeyFileName String Since Camel 2.11.0; filename of the keyring; will override existing setting directly on the
PGPDataFormat.

CamelPGPDataFormatEncryption
KeyRing

byte[] Since Camel 2.12.1; the encryption keyring; will override existing setting directly on the
PGPDataFormat.

CamelPGPDataFormatKeyUserid String Since Camel 2.11.0; the User ID of the key in the PGP keyring; will override existing setting
directly on the PGPDataFormat.

CamelPGPDataFormatKeyUserids List<Str
ing>

Since camel 2.12.2: the User IDs of the key in the PGP keyring; will override existing setting
directly on the PGPDataFormat.

CamelPGPDataFormatKeyPassword String Since Camel 2.11.0; password used when opening the private key; will override existing setting
directly on the PGPDataFormat.

https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/PGPPassphraseAccessor.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/PGPPassphraseAccessor.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/PGPPassphraseAccessor.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/PGPPassphraseAccessor.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/PGPPassphraseAccessor.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/PGPPassphraseAccessor.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/DefaultPGPPassphraseAccessor.java

1.

2.

3.

4.

CamelPGPDataFormatSignatureK
eyFileName

String Since Camel 2.11.0; filename of the signature keyring; will override existing setting directly on the
PGPDataFormat.

CamelPGPDataFormatSignatureK
eyRing

byte[] Since Camel 2.12.1; the signature keyring; will override existing setting directly on the
PGPDataFormat.

CamelPGPDataFormatSignatureK
eyUserid

String Since Camel 2.11.0; the User ID of the signature key in the PGP keyring; will override existing
setting directly on the PGPDataFormat.

CamelPGPDataFormatSignatureK
eyUserids

List<Str
ing>

Since Camel 2.12.3; the User IDs of the signature keys in the PGP keyring; will override existing
setting directly on the PGPDataFormat.

CamelPGPDataFormatSignatureK
eyPassword

String Since Camel 2.11.0; password used when opening the signature private key; will override
existing setting directly on the PGPDataFormat.

CamelPGPDataFormatEncryption
Algorithm

int Since Camel 2.12.2; symmetric key encryption algorithm; will override existing setting directly on
the PGPDataFormat.

CamelPGPDataFormatSignatureH
ashAlgorithm

int Since Camel 2.12.2; signature hash algorithm; will override existing setting directly on the
PGPDataFormat.

CamelPGPDataFormatCompressio
nAlgorithm

int Since Camel 2.12.2; compression algorithm; will override existing setting directly on the
PGPDataFormat.

CamelPGPDataFormatNumberOfEn
cryptionKeys

Integer Since number of public keys used for encrypting the symmectric key, set by Camel 2.12.3;
PGPDataFormat during encryptiion process

CamelPGPDataFormatNumberOfSi
gningKeys

Integer Since number of private keys used for creating signatures, set by Camel 2.12.3;
PGPDataFormat during signing process

Encrypting with PGPDataFormat

The following sample uses the popular PGP format for encrypting/decrypting files using the :Bouncy Castle Java libraries {snippet:id=pgp-
The following format|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/converter/crypto/PGPDataFormatTest.java}

sample performs signing + encryption, and then signature verification + decryption. It uses the same keyring for both signing and encryption, but you can
obviously use different keys:{snippet:id=pgp-format-signature|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/converter

Or using Spring:/crypto/PGPDataFormatTest.java} {snippet:id=pgp-xml-basic|lang=xml|url=camel/trunk/components/camel-crypto/src/test/resources/org
/apache/camel/component/crypto/SpringPGPDataFormatTest.xml}

To work with the previous example you need the following

A public keyring file which contains the public keys used to encrypt the data
A private keyring file which contains the keys used to decrypt the data
The keyring password

Managing your keyring

To manage the keyring, I use the command line tools, I find this to be the simplest approach in managing the keys. There are also Java libraries available
from if you would prefer to do it that way.http://www.bouncycastle.org/java.html

Install the command line utilities on linux

apt-get install gnupg
Create your keyring, entering a secure password

gpg --gen-key
If you need to import someone elses public key so that you can encrypt a file for them.

gpg --import <filename.key
The following files should now exist and can be used to run the example

ls -l ~/.gnupg/pubring.gpg ~/.gnupg/secring.gpg

PGP Decrypting/Verifying of Messages Encrypted/Signed by Different Private/Public Keys

Since .Camel 2.12.2

A PGP Data Formater can decrypt/verify messages which have been encrypted by different public keys or signed by different private keys. Just, provide
the corresponding private keys in the secret keyring, the corresponding public keys in the public keyring, and the passphrases in the passphrase accessor.

javaMap<String, String> userId2Passphrase = new HashMap<String, String>(2); // add passphrases of several private keys whose corresponding public
keys have been used to encrypt the messages userId2Passphrase.put("UserIdOfKey1","passphrase1"); // you must specify the exact User ID!
userId2Passphrase.put("UserIdOfKey2","passphrase2"); PGPPassphraseAccessor passphraseAccessor = new PGPPassphraseAccessorDefault
(userId2Passphrase); PGPDataFormat pgpVerifyAndDecrypt = new PGPDataFormat(); pgpVerifyAndDecrypt.setPassphraseAccessor
(passphraseAccessor); // the method getSecKeyRing() provides the secret keyring as byte array containing the private keys pgpVerifyAndDecrypt.
setEncryptionKeyRing(getSecKeyRing()); // alternatively you can use setKeyFileName(keyfileName) // the method getPublicKeyRing() provides the public
keyring as byte array containing the public keys pgpVerifyAndDecrypt.setSignatureKeyRing((getPublicKeyRing()); // alternatively you can use

http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html

setSignatureKeyFileName(signatgureKeyfileName) // it is not necessary to specify the encryption or signer User Id from("direct:start")unmarshal
(pgpVerifyAndDecrypt) // can decrypt/verify messages encrypted/signed by different private/public keys ...

The functionality is especially useful to support the key exchange. If you want to exchange the private key for decrypting you can accept for a
period of time messages which are either encrypted with the old or new corresponding public key. Or if the sender wants to exchange his signer
private key, you can accept for a period of time, the old or new signer key.
Technical background: The PGP encrypted data contains a Key ID of the public key which was used to encrypt the data. This Key ID can be used
to locate the private key in the secret keyring to decrypt the data. The same mechanism is also used to locate the public key for verifying a
signature. Therefore you no longer must specify User IDs for the unmarshaling.

Restricting the Signer Identities during PGP Signature Verification

Since Camel 2.12.3.

If you verify a signature you not only want to verify the correctness of the signature but you also want check that the signature comes from a certain
identity or a specific set of identities. Therefore it is possible to restrict the number of public keys from the public keyring which can be used for the
verification of a signature.

javaSignature User IDs// specify the User IDs of the expected signer identities List<String> expectedSigUserIds = new ArrayList<String>();
expectedSigUserIds.add("Trusted company1"); expectedSigUserIds.add("Trusted company2"); PGPDataFormat pgpVerifyWithSpecificKeysAndDecrypt =
new PGPDataFormat(); pgpVerifyWithSpecificKeysAndDecrypt.setPassword("my password"); // for decrypting with private key
pgpVerifyWithSpecificKeysAndDecrypt.setKeyFileName(keyfileName); pgpVerifyWithSpecificKeysAndDecrypt.setSignatureKeyFileName
(signatgureKeyfileName); pgpVerifyWithSpecificKeysAndDecrypt.setSignatureKeyUserids(expectedSigUserIds); // if you have only one signer identity then
you can also use setSignatureKeyUserid("expected Signer") from("direct:start")unmarshal(pgpVerifyWithSpecificKeysAndDecrypt) ...

If the PGP content has several signatures the verification is successful as soon as one signature can be verified.
If you do not want to restrict the signer identities for verification then do not specify the signature key User IDs. In this case all public keys in the
public keyring are taken into account.

Several Signatures in One PGP Data Format

Since Camel 2.12.3.

The PGP specification allows that one PGP data format can contain several signatures from different keys. Since Camel 2.13.3 it is possible to create such
kind of PGP content via specifying signature User IDs which relate to several private keys in the secret keyring.

javaSeveral Signatures PGPDataFormat pgpSignAndEncryptSeveralSignerKeys = new PGPDataFormat(); pgpSignAndEncryptSeveralSignerKeys.
setKeyUserid(keyUserid); // for encrypting, you can also use setKeyUserids if you want to encrypt with several keys
pgpSignAndEncryptSeveralSignerKeys.setKeyFileName(keyfileName); pgpSignAndEncryptSeveralSignerKeys.setSignatureKeyFileName
(signatgureKeyfileName); pgpSignAndEncryptSeveralSignerKeys.setSignaturePassword("sdude"); // here we assume that all private keys have the same
password, if this is not the case then you can use setPassphraseAccessor List<String> signerUserIds = new ArrayList<String>(); signerUserIds.add
("company old key"); signerUserIds.add("company new key"); pgpSignAndEncryptSeveralSignerKeys.setSignatureKeyUserids(signerUserIds); from
("direct:start")marshal(pgpSignAndEncryptSeveralSignerKeys) ...

Support of Sub-Keys and Key Flags in PGP Data Format Marshaler

Since Camel 2.12.3.
An can have a primary key and sub-keys. The usage of the keys is indicated by the so called . For example, you can have a OpenPGP V4 key Key Flags
primary key with two sub-keys; the primary key shall only be used for certifying other keys (Key Flag 0x01), the first sub-key shall only be used for signing
(Key Flag 0x02), and the second sub-key shall only be used for encryption (Key Flag 0x04 or 0x08). The PGP Data Format marshaler takes into account
these Key Flags of the primary key and sub-keys in order to determine the right key for signing and encryption. This is necessary because the primary key
and its sub-keys have the same User IDs.

Support of Custom Key Accessors

Since Camel 2.13.0.
You can implement custom key accessors for encryption/signing. The above PGPDataFormat class selects in a certain predefined way the keys which
should be used for signing/encryption or verifying/decryption. If you have special requirements how your keys should be selected you should use the PGPK

 class instead and implement the interfaces and as beans. There are default eyAccessDataFormat PGPPublicKeyAccessor PGPSecretKeyAccessor
implementations and which cache the keys, so that not every time the keyring is parsed DefaultPGPPublicKeyAccessor DefaultPGPSecretKeyAccessor
when the processor is called.

PGPKeyAccessDataFormat has the same options as PGPDataFormat except password, keyFileName, encryptionKeyRing, signaturePassword,
signatureKeyFileName, and signatureKeyRing.

Dependencies

To use the dataformat in your camel routes you need to add the following dependency to your pom.Crypto

xml<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-crypto</artifactId> <version>x.x.x</version> <!-- use the same version as
your Camel core version --> </dependency>

See Also

Data Format

https://tools.ietf.org/html/rfc4880#section-12.1
https://tools.ietf.org/html/rfc4880#section-5.2.3.21
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/PGPKeyAccessDataFormat.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/PGPKeyAccessDataFormat.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/PGPPublicKeyAccessor.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/PGPSecretKeyAccessor.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/DefaultPGPPublicKeyAccessor.java
https://github.com/apache/camel/blob/master/components/camel-crypto/src/main/java/org/apache/camel/converter/crypto/DefaultPGPSecretKeyAccessor.java
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

Crypto (Digital Signatures)
http://www.bouncycastle.org/java.html

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=17268924
http://www.bouncycastle.org/java.html

	Crypto

