Routebox

Routebox Component

Available as of Camel 2.6

@ Routebox subject for change

The Routebox component will be revisited in upcoming releases to see if it can be further simplified, be more intuitive and user friendly. The
related Context component may be regardes as the simpler component. This component may be @deprecated in favor of Context.

The routebox component enables the creation of specialized endpoints that offer encapsulation and a strategy based indirection service to a collection of
camel routes hosted in an automatically created or user injected camel context.

Routebox endpoints are camel endpoints that may be invoked directly on camel routes. The routebox endpoint performs the following key functions

® encapsulation - acts as a blackbox, hosting a collection of camel routes stored in an inner camel context. The inner context is fully under the
control of the routebox component and is JVM bound.

® strategy based indirection - direct payloads sent to the routebox endpoint along a camel route to specific inner routes based on a user defined
internal routing strategy or a dispatch map.

® exchange propagation - forward exchanges modified by the routebox endpoint to the next segment of the camel route.

The routebox component supports both consumer and producer endpoints.
Producer endpoints are of two flavors

® Producers that send or dispatch incoming requests to a external routebox consumer endpoint
® Producers that directly invoke routes in an internal embedded camel context thereby not sending requests to an external consumer.

Maven users will need to add the following dependency to their pom xmi for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactl|d>canel -rout ebox</artifactld>
<ver si on>x. x. x</ ver si on>
<l-- use the sane version as your Canel core version -->
</ dependency>

The need for a Camel Routebox endpoint
The routebox component is designed to ease integration in complex environments needing

® alarge collection of routes and
® involving a wide set of endpoint technologies needing integration in different ways

In such environments, it is often necessary to craft an integration solution by creating a sense of layering among camel routes effectively organizing them
into

® Coarse grained or higher level routes - aggregated collection of inner or lower level routes exposed as Routebox endpoints that represent an
integration focus area. For example

Focus Area Coarse grained Route Examples

Department Focus HR routes, Sales routes etc
Supply chain & B2B Focus | Shipping routes, Fulfillment routes, 3rd party services etc

Technology Focus Database routes, JMS routes, Scheduled batch routes etc

® Fine grained routes - routes that execute a singular and specific business and/or integration pattern.

Requests sent to Routebox endpoints on coarse grained routes can then delegate requests to inner fine grained routes to achieve a specific integration
objective, collect the final inner result, and continue to progress to the next step along the coarse-grained route.

URI format

rout ebox: r out eboxnane[?opti ons]

You can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

https://cwiki.apache.org/confluence/display/CAMEL/Context
https://cwiki.apache.org/confluence/display/CAMEL/Context

Options

Name Default Description
Value
di spatc null A string representing a key in the Camel Registry matching an object value implementing the interface org.apache.camel.component.routebox.
hStrate strategy.RouteboxDispatchStrategy
gy
di spatc | null A string representing a key in the Camel Registry matching an object value of the type HashMap<String, String>. The HashMap key should
hMap contain strings that can be matched against the value set for the exchange header ROUTE_DISPATCH_KEY. The HashMap value should
contain inner route consumer URI's to which requests should be directed.
innerCo auto A string representing a key in the Camel Registry matching an object value of the type org.apache.camel.CamelContext. If a CamelContext is
nt ext created not provided by the user a CamelContext is automatically created for deployment of inner routes.
innerRe null A string representing a key in the Camel Registry matching an object value that implements the interface org.apache.camel.spi.Registry. If
gistry Registry values are utilized by inner routes to create endpoints, an innerRegistry parameter must be provided
routeBu enpty A string representing a key in the Camel Registry matching an object value of the type List<org.apache.camel.builder.RouteBuilder>. If the user
ilders Li st does not supply an innerContext pre-primed with inner routes, the routeBuilders option must be provided as a non-empty list of RouteBuilders

containing inner routes

innerPr Direct The Protocol used internally by the Routebox component. Can be Direct or SEDA. The Routebox component currently offers protocols that
ot ocol are JVM bound.

sendToC true Dictates whether a Producer endpoint sends a request to an external routebox consumer. If the setting is false, the Producer creates an
onsuner embedded inner context and processes requests internally.

forkCon true The Protocol used internally by the Routebox component. Can be Direct or SEDA. The Routebox component currently offers protocols that
t ext are JVM bound.

threads 20 Number of threads to be used by the routebox to receive requests. Setting applicable only for innerProtocol SEDA.

queueSi | unlimted Create afixed size queue to receive requests. Setting applicable only for innerProtocol SEDA.
ze

Sending/Receiving Messages to/from the routebox

Before sending requests it is necessary to properly configure the routebox by loading the required URI parameters into the Registry as shown below. In the
case of Spring, if the necessary beans are declared correctly, the registry is automatically populated by Camel.

Step 1: Loading inner route details into the Registry

@verride
protected Jndi Registry createRegistry() throws Exception {
Jndi Regi stry registry = new Jndi Regi stry(createdndi Context());

/1 Wre the routeDefinitions & dispatchStrategy to the outer canel Context where the routebox is declared
Li st <Rout eBui | der> routes = new ArraylLi st <Rout eBui | der >();

rout es. add(new Si npl eRout eBui | der ());

registry.bind("registry", createlnnerRegistry());

regi stry. bind("routes", routes);

/'l Wre a dispatch map to registry

HashMap<String, String> map = new HashMap<String, String>();
map. put ("addToCat al og", "seda: addToCat al 0og");

map. put ("findBook", "seda:findBook");

regi stry. bi nd("map", nmap);

/1 Alternatively wiring a dispatch strategy to the registry
regi stry. bind("strategy", new Sinpl eRouteD spatchStrategy());

return registry;

}

private Jndi Regi stry createl nnerRegistry() throws Exception {
Jndi Regi stry innerRegistry = new Jndi Regi stry(createJndi Context());
BookCat al og cat al ogBean = new BookCat al og();
i nnerRegi stry. bind("library", catal ogBean);

return innerRegistry;

}

Canel Cont ext context = new Def aul t Canel Cont ext (createRegistry());

Step 2: Optionaly using a Dispatch Strategy instead of a Dispatch Map

Using a dispatch Strategy involves implementing the interface org.apache.camel.component.routebox.strategy.RouteboxDispatchStrategy as shown in the
example below.

public class SinpleRouteDi spatchStrategy inplenments RouteboxDi spatchStrategy {

/* (‘non-Javadoc)
* @ee org.apache. canel . conponent. r out ebox. strat egy. Rout eboxDi spat chSt r at egy#sel ect Desti nationUri (j ava.
util.List, org.apache.canel.Exchange)
*/
public UR selectDestinationUri(List<URlI> activeDestinations,
Exchange exchange) {
URI dispatchDestination = null;

String operation = exchange. getln().getHeader (" ROUTE_DI SPATCH KEY", String.class);
for (URI destination : activeDestinations) {
if (destination.toASCIString().equalslgnoreCase("seda:" + operation)) {
di spat chDesti nati on = destination;
br eak;

}

return dispatchDestination;

Step 2: Launching a routebox consumer

When creating a route consumer, note that the # entries in the routeboxUri are matched to the created inner registry, routebuilder list and dispatchStrategy
/dispatchMap in the CamelContext Registry. Note that all routebuilders and associated routes are launched in the routebox created inner context

private String routeboxUri = "routebox: nultipleRoutes?
i nner Regi st ry=#regi stry&rout eBui | der s=#r out es&di spat chMap=#map" ;

public void testRouteboxRequests() throws Exception {
Canel Cont ext context = createCanel Context();
tenpl ate = new Def aul t Producer Tenpl at e(cont ext);
tenplate.start();

cont ext . addRout es(new Rout eBui | der () {
public void configure() {
from(rout eboxUri)
.to("1 og: Routes operation perfornmed?showAl | =true");
}
IoF

context.start();

/1 Now use the ProducerTenplate to send the request to the routebox
tenpl at e. request BodyAndHeader (r out eboxUri, book, "ROUTE_DI SPATCH KEY", "addToCatal 0og");

Step 3: Using aroutebox producer

When sending requests to the routebox, it is not necessary for producers do not need to know the inner route endpoint URI and they can simply invoke the
Routebox URI endpoint with a dispatch strategy or dispatchMap as shown below

It is necessary to set a special exchange Header called ROUTE_DISPATCH_KEY (optional for Dispatch Strategy) with a key that matches a key in the
dispatch map so that the request can be sent to the correct inner route

fronm("direct:sendToStrat egyBasedRout ebox")
.to("routebox: nul tipl eRout es?i nner Regi st ry=#r egi stry&rout eBui | der s=#r out es&di spat chStrat egy=#strategy")
.to("l og: Rout es operation performed?showAl | =true");

from ("direct: sendToMapBasedRout ebox")
. set Header (" ROUTE_DI SPATCH_KEY", constant ("addToCat al 0g"))
.to("routebox: nul tipl eRout es?i nner Regi st ry=#r egi stryé&rout eBui | der s=#r out es&di spat chMap=#nap")
.to("1 og: Routes operation perfornmed?showAl | =true");

	Routebox

