
Routebox

Routebox Component

Available as of Camel 2.6

The component enables the creation of specialized endpoints that offer encapsulation and a strategy based indirection service to a collection of routebox
camel routes hosted in an automatically created or user injected camel context.

Routebox endpoints are camel endpoints that may be invoked directly on camel routes. The routebox endpoint performs the following key functions

encapsulation - acts as a blackbox, hosting a collection of camel routes stored in an inner camel context. The inner context is fully under the
control of the routebox component and is .JVM bound
strategy based indirection - direct payloads sent to the routebox endpoint along a camel route to specific inner routes based on a user defined
internal routing strategy or a dispatch map.
exchange propagation - forward exchanges modified by the routebox endpoint to the next segment of the camel route.

The routebox component supports both consumer and producer endpoints.

Producer endpoints are of two flavors

Producers that send or dispatch incoming requests to a external routebox consumer endpoint
Producers that directly invoke routes in an internal embedded camel context thereby not sending requests to an external consumer.

Maven users will need to add the following dependency to their for this component:pom.xml

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-routebox</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

The need for a Camel Routebox endpoint

The routebox component is designed to ease integration in complex environments needing

a large collection of routes and
involving a wide set of endpoint technologies needing integration in different ways

In such environments, it is often necessary to craft an integration solution by creating a sense of layering among camel routes effectively organizing them
into

Coarse grained or higher level routes - aggregated collection of inner or lower level routes exposed as Routebox endpoints that represent an
integration focus area. For example

Focus Area Coarse grained Route Examples

Department Focus HR routes, Sales routes etc

Supply chain & B2B Focus Shipping routes, Fulfillment routes, 3rd party services etc

Technology Focus Database routes, JMS routes, Scheduled batch routes etc

Fine grained routes - routes that execute a singular and specific business and/or integration pattern.

Requests sent to Routebox endpoints on coarse grained routes can then delegate requests to inner fine grained routes to achieve a specific integration
objective, collect the final inner result, and continue to progress to the next step along the coarse-grained route.

URI format

routebox:routeboxname[?options]

You can append query options to the URI in the following format, ?option=value&option=value&...

Routebox subject for change

The Routebox component will be revisited in upcoming releases to see if it can be further simplified, be more intuitive and user friendly. The
related component may be regardes as the simpler component. This component may be @deprecated in favor of .Context Context

https://cwiki.apache.org/confluence/display/CAMEL/Context
https://cwiki.apache.org/confluence/display/CAMEL/Context

Options
Name Default

Value
Description

dispatc
hStrate
gy

null A string representing a key in the Camel Registry matching an object value implementing the interface org.apache.camel.component.routebox.
strategy.RouteboxDispatchStrategy

dispatc
hMap

null A string representing a key in the Camel Registry matching an object value of the type HashMap<String, String>. The HashMap key should
contain strings that can be matched against the value set for the exchange header . The HashMap value should ROUTE_DISPATCH_KEY
contain inner route consumer URI's to which requests should be directed.

innerCo
ntext

auto
created

A string representing a key in the Camel Registry matching an object value of the type . If a CamelContext is org.apache.camel.CamelContext
not provided by the user a CamelContext is automatically created for deployment of inner routes.

innerRe
gistry

null A string representing a key in the Camel Registry matching an object value that implements the interface . If org.apache.camel.spi.Registry
Registry values are utilized by inner routes to create endpoints, an innerRegistry parameter must be provided

routeBu
ilders

empty
List

A string representing a key in the Camel Registry matching an object value of the type . If the user List<org.apache.camel.builder.RouteBuilder>
does not supply an innerContext pre-primed with inner routes, the routeBuilders option must be provided as a non-empty list of RouteBuilders
containing inner routes

innerPr
otocol

Direct The Protocol used internally by the Routebox component. Can be Direct or SEDA. The Routebox component currently offers protocols that
are JVM bound.

sendToC
 onsumer
true Dictates whether a Producer endpoint sends a request to an external routebox consumer. If the setting is false, the Producer creates an

embedded inner context and processes requests internally.

forkCon
text

true The Protocol used internally by the Routebox component. Can be Direct or SEDA. The Routebox component currently offers protocols that
are JVM bound.

 threads 20 Number of threads to be used by the routebox to receive requests. .Setting applicable only for innerProtocol SEDA

queueSi
ze

unlimited Create a fixed size queue to receive requests. .Setting applicable only for innerProtocol SEDA

Sending/Receiving Messages to/from the routebox

Before sending requests it is necessary to properly configure the routebox by loading the required URI parameters into the Registry as shown below. In the
case of Spring, if the necessary beans are declared correctly, the registry is automatically populated by Camel.

Step 1: Loading inner route details into the Registry

@Override
protected JndiRegistry createRegistry() throws Exception {
 JndiRegistry registry = new JndiRegistry(createJndiContext());

 // Wire the routeDefinitions & dispatchStrategy to the outer camelContext where the routebox is declared
 List<RouteBuilder> routes = new ArrayList<RouteBuilder>();
 routes.add(new SimpleRouteBuilder());
 registry.bind("registry", createInnerRegistry());
 registry.bind("routes", routes);

 // Wire a dispatch map to registry
 HashMap<String, String> map = new HashMap<String, String>();
 map.put("addToCatalog", "seda:addToCatalog");
 map.put("findBook", "seda:findBook");
 registry.bind("map", map);

 // Alternatively wiring a dispatch strategy to the registry
 registry.bind("strategy", new SimpleRouteDispatchStrategy());

 return registry;
}

private JndiRegistry createInnerRegistry() throws Exception {
 JndiRegistry innerRegistry = new JndiRegistry(createJndiContext());
 BookCatalog catalogBean = new BookCatalog();
 innerRegistry.bind("library", catalogBean);

 return innerRegistry;
}
...
CamelContext context = new DefaultCamelContext(createRegistry());

Step 2: Optionaly using a Dispatch Strategy instead of a Dispatch Map

Using a dispatch Strategy involves implementing the interface as shown in the org.apache.camel.component.routebox.strategy.RouteboxDispatchStrategy
example below.

public class SimpleRouteDispatchStrategy implements RouteboxDispatchStrategy {

 /* (non-Javadoc)
 * @see org.apache.camel.component.routebox.strategy.RouteboxDispatchStrategy#selectDestinationUri(java.
util.List, org.apache.camel.Exchange)
 */
 public URI selectDestinationUri(List<URI> activeDestinations,
 Exchange exchange) {
 URI dispatchDestination = null;

 String operation = exchange.getIn().getHeader("ROUTE_DISPATCH_KEY", String.class);
 for (URI destination : activeDestinations) {
 if (destination.toASCIIString().equalsIgnoreCase("seda:" + operation)) {
 dispatchDestination = destination;
 break;
 }
 }

 return dispatchDestination;
 }
}

Step 2: Launching a routebox consumer

When creating a route consumer, note that the # entries in the routeboxUri are matched to the created inner registry, routebuilder list and dispatchStrategy
/dispatchMap in the CamelContext Registry. Note that all routebuilders and associated routes are launched in the routebox created inner context

private String routeboxUri = "routebox:multipleRoutes?
innerRegistry=#registry&routeBuilders=#routes&dispatchMap=#map";

public void testRouteboxRequests() throws Exception {
 CamelContext context = createCamelContext();
 template = new DefaultProducerTemplate(context);
 template.start();

 context.addRoutes(new RouteBuilder() {
 public void configure() {
 from(routeboxUri)
 .to("log:Routes operation performed?showAll=true");
 }
 });
 context.start();

 // Now use the ProducerTemplate to send the request to the routebox
 template.requestBodyAndHeader(routeboxUri, book, "ROUTE_DISPATCH_KEY", "addToCatalog");
}

Step 3: Using a routebox producer

When sending requests to the routebox, it is not necessary for producers do not need to know the inner route endpoint URI and they can simply invoke the
Routebox URI endpoint with a dispatch strategy or dispatchMap as shown below

It is necessary to set a special exchange Header called (optional for Dispatch Strategy) with a key that matches a key in the ROUTE_DISPATCH_KEY
dispatch map so that the request can be sent to the correct inner route

from("direct:sendToStrategyBasedRoutebox")
 .to("routebox:multipleRoutes?innerRegistry=#registry&routeBuilders=#routes&dispatchStrategy=#strategy")
 .to("log:Routes operation performed?showAll=true");

from ("direct:sendToMapBasedRoutebox")
 .setHeader("ROUTE_DISPATCH_KEY", constant("addToCatalog"))
 .to("routebox:multipleRoutes?innerRegistry=#registry&routeBuilders=#routes&dispatchMap=#map")
 .to("log:Routes operation performed?showAll=true");

	Routebox

