
OODT Filemgr User Guide

The File Manager
An Overview of What is Installed
Configuring and Running the File Manager

Whats going to happen?
Now for some configuration
What have we configured?
How metadata is collected?
A brief overview of filemgr-client and query-tool
Command: filemgr-client
Command: query-tool
A Typical User Scenario

A few more tools
Tips and Tricks for FileManager

The File Manager

This self guided tutorial is intended for first time users.

The fact that you've found this page, I assume that you are seriously thinking of using the OODT File Manager but are eager to get something up and
running. It hopefully also means that you've checked out the code and built a cas-filemgr install target (e.g. a cas-filemgr-${version}-dist.tar.gz
file).

This tutorial is by no means a complete overview of all the File Managers functionality. However, it's an attempt to get you started using the basic tools.
Like learning to drive a car, the most difficult part is getting it started and on the road!

The following topics are covered on this page:

An Overview of What is Installed
Configuring and Running the File Manager
A Typical User Scenario - ingesting and querying

An Overview of What is Installed

Assumption - you have built or have access to a cas-filemgr install target. This also means that you've correctly configured maven and java for your system.

Here are the commands to install the cas-filemgr target from a tarfile. You will need to fit in the "..." with the appropriate content.

$ mkdir -p /usr/local/oodt/
$ tar xzvf .../filemgr/target/cas-filemgr-${version}-dist.tar.gz -C /usr/local/oodt/
$ cd /usr/local/oodt/
$ ln -s cas-filemgr-${version}/ cas-filemgr

The decompressed tar file creates a directory structure that looks as follows:

.
 bin
 filemgr
 filemgr-client
 query-tool
 etc
 filemgr.properties
 mime-types.xml
 lib
 *.jar
 logs
 policy
| cmd-line-actions.xml
| cmd-line-options.xml
| core
| elements.xml
| product-type-element-map.xml
| product-types.xml
| |
| trace
| | elements.xml
| | product-type-element-map.xml
| | product-types.xml
| |
| geo
| | elements.xml
| | product-type-element-map.xml
| | product-types.xml
| |
| (additional policy sub directories)
 run

Please note, if you are using version 0.3 of OODT or earlier, the policy directory will look like this (with no sub directories):

 policy
 elements.xml
 product-type-element-map.xml
 product-types.xml

Here is a brief description of each directory that you see listed:

bin : contains shell convenience scripts for launching java classes
etc : contains configuration files, i.e. *.property and *.xml files
lib : contains java resources, i.e *.jar files
logs : contains file manager log files.
policy : contains product specifications, i.e *.xml specification files

The directory contains a number of executables:bin

filemgr : file manager (startup/shutdown) script
filemgr-client : file manager client interface script
query-tool : catalog query tool

Configuring and Running the File Manager

You're now ready to run the file manager!

$ cd /usr/local/oodt/cas-filemgr/bin
$./filemgr --help
Usage: ./filemgr {start|stop|status}
$./filemgr start

Whats going to happen?

The filemgr should be up and running, however, some WARNING messages appear, complaining about configuration.may

If you get a java.net.BindException exception, make sure that no other service is running on port 9000. This is the port for an RPC interface that will be
used for transferring data files into a repository.

There's also a new file in the /usr/local/oodt/run directory. The file contains the filemgr process id. This is typical for *nix service house keeping. It is done
to try and avoid running multiple filemgr services.

There's also a new log file /usr/local/oodt/cas-filemgr/logs/cas_filemgr0.log. Tailing this file can often alert to you problems.

$ tail -f /usr/local/oodt/cas-filemgr/logs/cas_filemgr0.log

Now for some configuration

To do anything useful with your filemgr, you will need to specify some configurations in the /usr/local/oodt/cas-filemgr/etc/filemgr.properties file.

Here is a basic modification to the filemgr.properties file:

filemgr.properties

org.apache.oodt.cas.filemgr.catalog.lucene.idxPath=/usr/local/oodt/cas-filemgr/catalog
org.apache.oodt.cas.filemgr.repositorymgr.dirs=file:///usr/local/oodt/cas-filemgr/policy/core
org.apache.oodt.cas.filemgr.validation.dirs=file:///usr/local/oodt/cas-filemgr/policy/core
org.apache.oodt.cas.filemgr.mime.type.repository=/usr/local/oodt/cas-filemgr/etc/mime-types.xml

You will also need to specify a repository path in the product-types.xml file. Make sure that this path exists before you change the repository path xml
element.

product-types.xml

<repository path="file:///var/archive/data"/>

Restart your filemgr so that it re-reads the filemgr.properties and product-types.xml:
$ cd /usr/local/oodt/cas-filemgr/bin
$./filemgr restart

What have we configured?

A place to store your catalog, i.e. the database of metadata.
A place to store your ingested files, i.e. the repository.

The location of your policy directory for product specifications.
Your mime-types configuration file for file recognition.

How metadata is collected?

Now for some brief notes about how metadata is collected. The filemgr captures metadata in two different ways - from client side metadata extraction and
server side metadata extraction.

Client side metadata is passed to the filemgr via an xml formatted metadata file. E.g. a file called can have a metadata file called blah.txt blah.txt.
. This met file can be created in many ways, even by hand! And thats exactly what we're going to do.met

Server side metadata is generated by using java classes and the extractors that will be used are configured in the product-types.xml file in the chosen
policy directory. For this example configuration, you should have as the policy directory, unless you're /usr/local/oodt/cas-filemgr/policy/oodt
running version 0.3 or earlier of OODT, in which case you should have as the policy directory./usr/local/oodt/cas-filemgr/policy

Now would be a good time to have a quick look at the file. It contains some critical information about what is going to happen when product-types.xml
we ingest our first file into the repository.

Specified in the product-types.xml file, there is a default product type called GenericFile. This is the product type that we are going to use for the first file for
ingestion.

For the GenericFile type find the key. It's specifying some metadata. We're defining the product type!<metadata>

For the GenericFile type find the key. It's specifying some extractors to use for server side metadata extraction, namely: <metExtractors>
CoreMetExtractor, MimeTypeExtractor, FinalFileLocationExtractor. For more details about metadata and extractors see .Metadata Extractors

If you're feeling curious, check out the other xml files in the subdirectories to get a better feel for how we /usr/local/oodt/cas-filemgr/policy
define product types and elements. For a discussion of best practices w.r.t File Manager Policy, the reader is referred to Everything you want to know
about File Manager Policy

A brief overview of filemgr-client and query-tool

These commands are found in ./usr/local/oodt/cas-filemgr/bin

Command: filemgr-client

In order to trigger a file ingestion we're going to use the . This is by no means the most automated way to ingest data into an repository, filemgr-client
however it's a really easy and intuitive way to trigger a file ingestion. The is a wrapper script, making it easier to invoke a java filemgr-client
executable from the command line.

$ cd /usr/local/oodt/cas-filemgr/bin
$./filemgr-client --help
filemgr-client --url <url to xml rpc service> --operation [<operation> [params]]
operations:
--addProductType --typeName <name> --typeDesc <description>
 --repository <path> --versionClass <classname of versioning impl>
--ingestProduct --productName <name> --productStructure <Hierarchical|Flat>
 --productTypeName <name of product type> --metadataFile <file>
 [--clientTransfer --dataTransfer <java class name of data transfer factory>]
 --refs <ref1>...<refn>
--hasProduct --productName <name>
--getProductTypeByName --productTypeName <name>
--getNumProducts --productTypeName <name>
--getFirstPage --productTypeName <name>
--getNextPage --productTypeName <name> --currentPageNum <number>
--getPrevPage --productTypeName <name> --currentPageNum <number>
--getLastPage --productTypeName <name>
--getCurrentTransfer
--getCurrentTransfers
--getProductPctTransferred --productId <id> --productTypeName <name>
--getFilePctTransferred --origRef <uri>

As you can see there's a number of different ways this command can be executed.

The first command line argument is . This is the location of the filemgr xml-rpc data transfer interface. Looking at the filemgr logs (specifically --url
cas_filemgr0.log), we see an INFO statement telling us that local data transfer is enable on . This is the url that we need to specify.http://localhost:9000

The second command line argument is and there are 13 different types of operations that are possible! For now we are going to use the --operation --
 operation. From the help command you can see that the operation requires some further command line arguments ingestProduct --ingestProduct

to be specified.

However, before we take a look at the , I would first like to shed a bit more light on the command.--operation --ingestProduct query-tool

Command: query-tool

This is a very useful wrapper script to query the content of your repository.

https://cwiki.apache.org/confluence/display/OODT/Metadata+Extractors
https://cwiki.apache.org/confluence/display/OODT/Everything+you+want+to+know+about+File+Manager+Policy
https://cwiki.apache.org/confluence/display/OODT/Everything+you+want+to+know+about+File+Manager+Policy
http://localhost:9000

$ cd /usr/local/oodt/cas-filemgr/bin
$./query-tool
Must specify a query and filemgr url!
Usage: QueryTool [options]
options:
--url <fm url>
 Lucene like query options:
 --lucene
 -query <query>
 SQL like query options:
 --sql
 -query <query>
 -sortBy <metadata-key>
 -outputFormat <output-format-string>

We see that we need to set some command line arguments to get anything useful out of the query tool. Try the next command:

$./query-tool --url --sql -query 'SELECT * FROM GenericFile'http://localhost:9000

This should throw an exception, telling us it failed to perform a query. This is because there is no catalog yet (and therefore the GenericFile information
does not exist). In fact if you have a look there is no catalog directory:

$ ls /usr/local/oodt/cas-filemgr/catalog
ls: /usr/local/oodt/cas-filemgr/catalog: No such file or directory

A Typical User Scenario

Time to ingest a very, very simple file. If you have not already, restart your filemgr so that it re-reads the filemgr.properties:
$ cd /usr/local/oodt/cas-filemgr/bin
$./filemgr restart

For this simple ingestion we are not going to include any client side metadata, all the metadata collection will happen on the server side using the specified
*Extractor extractors in the file.product-types.xml

Create a text file and its metadata file for ingestion:
$ echo 'hello' > /tmp/blah.txt
$ touch /tmp/blah.txt.met

Add the following xml to the /tmp/blah.txt.met file:

blah.txt.met

<cas:metadata xmlns:cas="http://oodt.jpl.nasa.gov/1.0/cas">
</cas:metadata>

Lets ingest the file! For we need to specify the following arguments:--operation --ingestProduct

--productName : The name you want for your ingested product
--productStructure : Flat file or directory (i.e. hierarchical). Yes... we can ingest whole directories as one product
--productTypeName : A product type (as per product-types.xml)
--metadataFile : The client side metadata file
--refs : The product location

There's also an optional argument , however, we're going to leave this and use the default local transfer.--clientTransfer
[--clientTransfer --dataTransfer <java class name of data transfer factory>]

Here is the complete command:
$./filemgr-client --url --operation --ingestProduct --productName blah.txt --http://localhost:9000
productStructure Flat --productTypeName GenericFile --metadataFile --refs file:///tmp/blah.txt.met file:///tmp
/blah.txt

The output should look like:
Sep 16, 2011 2:09:42 PM org.apache.oodt.cas.filemgr.system.XmlRpcFileManagerClient <init>
...
...
ingestProduct: Result: c2fbf4b9-e05c-11e0-9022-77a707615e7f

You've just archived your first file .

To complete the process, lets see if we can retrieve the metadata. Run the query command again:
$ cd /usr/local/oodt/cas-filemgr/bin
$./query-tool --url --sql -query 'SELECT * FROM GenericFile'http://localhost:9000

http://localhost:9000
http://localhost:9000
file:///tmp/blah.txt.met
file:///tmp/blah.txt
file:///tmp/blah.txt
http://localhost:9000

1.

2.
3.

The output should look like:
Sep 16, 2011 2:21:54 PM org.apache.oodt.cas.filemgr.system.XmlRpcFileManager complexQuery
INFO: Query returned 1 results
/var/archive/data/blah.txt,GenericFile,blah.txt,blah.txt,2011-09-16T14:09:43.405+02:00,c2fbf4b9-e05c-11e0-9022-
77a707615e7f,Flat,text/plain,text,plain

Check to see if the file has appeared in the archive:
$ ls /var/archive/data/blah.txt/
blah.txt

Query commands do not depend on the underlying catalog implementation. The and instead describe the filemgr query syntax.--sql --lucene

At the time of writing this tutorial, composing queries using query-tool is not entirely straight forward, but entirely usable. Formatting of these queries is
critical, small deviations from the syntax can result in the query return an unexpected value or throwing an exception.

Some things to note about SQL queries:

Use double quotes ("") for when specifying the SQL syntax. The single quote ('') is used for string values in a WHERE clause, e.g WHERE
Filename='blah.txt'
Count the number of -- before each command line option. Some are -- and others are -.
The order of the return values for a search is not guaranteed unless you specify the \outputFormat option.

Here is a somewhat verbose example that uses all the SQL-like syntax that I am currently aware of (apologies for all the line breaks).

$ cd /usr/local/oodt/cas-filemgr/bin
$./query-tool --url http://localhost:9000 --sql \
-query "SELECT CAS.ProductReceivedTime,CAS.ProductName,CAS.ProductId,ProductType,\
ProductStructure,Filename,FileLocation,MimeType \
FROM GenericFile WHERE Filename='blah.txt'" -sortBy 'CAS.ProductReceivedTime' \
-outputFormat '$CAS.ProductReceivedTime,$CAS.ProductName,$CAS.ProductId,$ProductType,\
$ProductStructure,$Filename,$FileLocation,$MimeType'

The output should look like:
2011-10-07T10:59:12.031+02:00,blah.txt,a00616c6-f0c2-11e0-baf4-65c684787732,
GenericFile,Flat,blah.txt,/var/kat/archive/data/blah.txt,text/plain

Now you can also check out some of the other 12 possibilities for filemgr-client. For instance:--operation

$./filemgr-client --url --operation --hasProduct --productName blah.txthttp://localhost:9000

Or:

$./filemgr-client --url --operation --getFirstPage --productTypeName GenericFilehttp://localhost:9000

A few more tools

Cameron Goodale has written some useful command line tools aliases that are worth mentioning before we continue. See the following two web pages: htt
ps://issues.apache.org/jira/browse/OODT-306
BASH and TCSH shell tools for File Manager

Tips and Tricks for FileManager

Q: My Lucene Index Catalog is running slow now that I have over 100,000 products cataloged. How can I get the speed back?

A: Run this command:
java -Djava.endorsed.dirs=<path/to/lib/dir> org.apache.oodt.cas.filemgr.tools.OptimizeLuceneCatalog --catalogPath
<path/to/catalog>

http://localhost:9000
http://localhost:9000
https://issues.apache.org/jira/browse/OODT-306
https://issues.apache.org/jira/browse/OODT-306
https://cwiki.apache.org/confluence/display/OODT/BASH+and+TCSH+shell+tools+for+File+Manager

	OODT Filemgr User Guide

