
Stonehenge StockTrader Sample Application

Scenario
Stonehenge StockTrader is a web application that allows the user to buy and sell
stocks, manage their portfolio, view market data, and manage their account. The
Web Application itself serves as a client for services that process buy and sell
orders, and provide market and configuration information. The implementation does
not consider all of the dynamics involved in trading stocks, but instead simplifies the
scenario so that developers from any industry might benefit without a strong
background in investment banking and finance.

StockTrader is the first undertaking of the larger Stonehenge initiative which will
include a collection of sample applications built to demonstrate best practices for
interoperability across multiple platforms and frameworks by conforming to the
defined OASIS and W3C standards.

Table of Contents

Scenario
Live Demonstrations
Architecture

Overview and Components
Communication and Process Flow
Security

History
Implementations
Components
Learn & Explore

Live Demonstrations
In December of 2009, the PHP and .NET implementations of the StockTrader Client
were ported to run on Windows Azure. These live cloud-based versions of the StockT

 can be accessed using the URLs in the table below:rader Client

Implementation URL

PHP http://wso2wsastest1.cloudapp.net/php_stocktrader/trader_client/

.NET http://stocktraderazure.cloudapp.net/

Architecture
The was designed in a loosely Stonehenge StockTrader Sample Application
coupled, modularized, service-oriented fashion. Its design maximizes points of
integration, and thus interoperability between systems and/or platforms. This section
briefly defines the various components that compose the Stonehenge StockTrader

, describes their relationships, communication, and security Sample Application
requirements.

Overview and Components

https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
http://wso2wsastest1.cloudapp.net/php_stocktrader/trader_client/
http://stocktraderazure.cloudapp.net/

Figure 1.
StockTrader Sample Application Architecture

The components can be broken down Stonehenge StockTrader Sample Application
into 5 categories. These categories are , , Identity Management Presentation Applic

, , and . The Backend Logic category is ation Logic Backend Logic Data Access
more or less artificial inasmuch as the could StockTrader Order Processor Service
well be grouped into the Application Logic category. Other components could fall
under more than one category as well (e.g., the Passive STS component could be
grouped under the Presentation heading). With such considerations in mind, this
categorization will be used only for examination of the components here, and was
not necessarily intended when the solution was designed.

Each category contains one or more components that are self-contained units that
have no dependencies on a specific version of any other component. That is not to
say that each component has no dependencies at all, but rather it can communicate
with multiple different implementations of every other component without regard for
the framework and/or platform on top of which the dependent components were
designed. That being said, there are multiple different implementations of each
component. Not all implementations of the StockTrader Sample Application offer all
of the components mentioned (e.g., some choose only to implement the web service
based components).

In the scenario for the sample, the application is an application StockTrader Client
managed by an online bank that wishes to provide their clients with access to an
investment account with a third party stock broker. The and the StockTrader Client P

 are managed by the online bank, while the remaining components are assive STS
managed by the stock broker. The does not fit StockTrader Configuration Service
well into this scenario, but can be excused as being simply a mechanism through
which one can easily test and demonstrate different runtime configurations, and thus
a component divorced from the scenario at hand.

The category contains the application. This is the Presentation StockTrader Client
web application that allows an end user to interact with his or her investment
account. This web application communicates with the StockTrader Configuration

 to gather endpoint information at runtime, and the Service StockTrader Business
 to access market and account information.Service

The category contains the and the Business Logic StockTrader Business Service St
. The is the heart of ockTrader Configuration Service StockTrader Business Service

the StockTrader sample application. Nearly all interactions with the Stonehenge
 will, at one point or another, result in data flowing StockTrader Sample Application

through this service. It communicates directly with the as well StockTrader Database
as with the . It also relies on the StockTrader Order Processor Service StockTrader

 to provide information about where each of these is located.Configuration Service

The category contains the . Backend Logic StockTrader Order Processor Service
This service is responsible for final processing of all buy and sell orders that flow
through the system. It communicates directly with the , and StockTrader Database
resolves the location of the database at runtime with the help of the StockTrader

.Configuration Service

The category simply contains the . This Data Access StockTrader Database
represents the data storage location of all market, account, and configuration data
for the .Stonehenge StockTrader Sample Application

https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Database
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Database
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Database

1.

2.

3.

4.

5.

6.

The category contains two components that were added as Identity Management
part of . These components are the and the . The online M2 Passive STS Active STS
bank's is responsible for actually authenticating users, and passing Passive STS
claims about the users to the . The stock broker's has StockTrader Client Active STS
a trust relationship with the bank's and willingly translates the bank's Passive STS
claims about the user to claims that the stock broker's services will require for
authorization purposes.

Communication and Process Flow

Figure 2.
Possible Communication within StockTrader Sample Application

This section describes a typical sequence of interactions that might be encountered
while using the . It represents multiple Stonehenge StockTrader Sample Application
requests by the user in a single session that interacts with all of the components
within the solution.

The user accesses the page for the first time, and StockTrader Client
navigates to their account information. Since the user has not yet been
authenticated, the redirects the user to the .StockTrader Client Passive STS
The Passive STS is a completely different web application that is only
concerned with authenticating users, and nothing more.
The user enters his or her credentials into the web page presented by the P

, and then clicks a button to continue what they were doing. The assive STS
information is validated and issued an XML-based SAML security token that
contains claims about the user. In the case of the StockTrader sample, the
only claim is their userID. This token is POSTed back to the StockTrader

 site and temporarily stored for later use.Client
Now that the user has been authenticated, the needs to StockTrader Client
determine where the is located. In order to StockTrader Business Service
do this, it makes a request to the to find StockTrader Configuration Service
the correct endpoint.
Next the needs to actually gather account information to StockTrader Client
return to display to the user. Since the is managed by the Passive STS
bank, while the investment account is managed by the stock broker, the Sto

 must get a new security token that makes sense to the ckTrader Client
stock broker's systems. To retrieve this new token, the client sends the
user's stored token to the broker's .Active STS
The stock broker's verifies that the token is from a trusted Active STS
source, and translates the claims to those claims that are required by the St

, and creates and signs a new token with these ockTrader Business Service
claims. It returns this new token to the .StockTrader Client
The now has all of the data required to call the StockTrader Client StockTra

. It requests the user's account information from the der Business Service
Business Service, and includes the token issued by the broker's .Active STS

https://cwiki.apache.org/confluence/display/STONEHENGE/M2
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644415
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644415
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644415
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644415
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644415

7.

8.

9.
10.

11.

12.

13.

14.

15.

16.

17.

The receives the request, and then queries StockTrader Business Service
the for information about where the StockTrader Configuration Service
database is located.
Once the has the location of the database, it StockTrader Business Service
looks up the account information and returns it to the .StockTrader Client
The can now render the information to the user.StockTrader Client
The user wishes to sell one of his or her stocks, and initiates a trade using
the user interface presented by the .StockTrader Client
The sends the request to the StockTrader Client StockTrader Business

. It uses all appropriate tokens and configuration already described. Service
The call to the Passive STS is no longer required, as the client has
temporarily stored the token.
The receives the order and forwards it to the StockTrader Business Service

 asynchronously. It immediately StockTrader Order Processor Service
responds back to the with details about the order. Just StockTrader Client
like before, the endpoint information for the StockTrader Order Processor

 was resolved at runtime through the Service StockTrader Configuration
.Service

The receives the order, and then StockTrader Order Processor Service
updates the appropriate tables in the . Just like StockTrader Database
before, the database location was resolved at runtime through the StockTra

.der Configuration Service
The user wishes to check on the status of the order, and accesses his or
her Account page within the .StockTrader Client
The calls the for a list of StockTrader Client StockTrader Business Service
"closed" orders. This assumes the same security and endpoint resolution
steps already described.
Upon retrieving the "closed" orders from the , the StockTrader Database Sto

 marks them as "completed". These orders are ckTrader Business Service
sent back to the .StockTrader Client
The can now render recently completed orders to the StockTrader Client
user in the form of "Trade Alerts".

The swim lane diagram in shows a subset of the interactions desribed in Figure 3
the process above. It includes only those steps up to the point that the order is
successfully processed by the , but not to the StockTrader Order Processor Service
point that the end user has received a "Trade Alert".

Figure 3.
Swimlane diagram depicting the process of placing a buy order within the StockTrader Sample
Application

Security

Note

These interactions may not be obvious within the code of some
implementations, as they build on top of frameworks and platforms that
automatically handle much of this communication.

https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Database
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Database
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service

In the , the handled authentication and authorization M1 Release StockTrader Client
internally. Beginning with , users are authenticated through the bank's M2 Passive

, which issues claims to authenticated users which include their StockTrader STS
userID. Before any additional service calls are made, the claims are passed by the St

 to the broker's which translates these claims into a new ockTrader Client Active STS
set of claims in a new token that the broker's services understand. This new token is
used in subsequent service calls from the . This approach StockTrader Client
effectively decouples authentication from any client-side logic, and allows a user's
identity to be managed by an external entity, as opposed to the same entity that
manages their investment accounts.

Beyond the client, communication between the and StockTrader Business Service St
 is encrypted and signed using a shared ockTrader Order Processor Service

certificate.

Security in relies on frameworks that implement the WS-Security, WS-Trust, and M2
WS-Federation standards.

History
Stonehenge StockTrader began its life as two separate projects by two industry
vendors. Microsoft created the .NET StockTrader in response to an IBM sample
application with a similar feature set. It was used primarily as a performance
benchmark between the platforms each offered. Later, WSO2 developed a full suite
of Stocktrader samples that offered full interoperability with the .NET StockTrader.
Both Microsoft's .NET StockTrader and WSO2's StockTrader implementations
continued life in the Stonehenge project as code donations to jumpstart the project.

Implementations
Metro StockTrader (Sun Metro & JSF)

Installation Guide
Documentation

.NET StockTrader (Microsoft WCF & ASP.NET)
Installation Guide
Documentation

PHP StockTrader (WSO2 WSF/PHP)
Installation Guide
Documentation

WSAS StockTrader (WSO2 WSAS)
Installation Guide
Documentation

Components
Identity Management

Active STS
Passive STS

Presentation
Trader Client

Application Logic
Business Service
Configuration Service

Backend Logic
Order Processor Service

Data Access
Database

Learn & Explore
StockTrader Interoperability Guides

https://cwiki.apache.org/confluence/display/STONEHENGE/M1+Release
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/M2
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644415
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/M2
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+Metro+StockTrader+Installation+Guide
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+Metro+StockTrader+Documentation
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+.NET+StockTrader+Installation+Guide
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+.NET+StockTrader+Documentation
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+PHP+and+WSAS+Stocktrader+Installation+Guide
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+PHP+StockTrader+Documentation
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+WSAS+StockTrader+Installation+Guide
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+WSAS+StockTrader+Documentation
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644415
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20644417
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Business+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Configuration+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Database
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Interoperability+Guides

	Stonehenge StockTrader Sample Application

