Rest DSL

Rest DSL

Available as of Camel 2.14

Apache Camel offers a REST styled DSL which can be used with Java or XML. The intention is to allow end users to define REST services using a REST
style with verbs such as GET, POST, DELETE etc.

How it works

The Rest DSL is a facade that builds Rest endpoints as consumers for Camel routes. The actual REST transport is leveraged by using Camel REST
components such as Restlet, Spark-rest, and others that has native REST integration.

Components supporting Rest DSL
The following Camel components supports the Rest DSL. See the bottom of this page for how to integrate a component with the Rest DSL.

camel-coap

camel-netty-http (also supports Swagger Java)

camel-netty4-http (also supports Swagger Java)

camel-jetty (also supports Swagger Java)

camel-restlet (also supports Swagger Java)

camel-servlet (also supports Swagger Java)

camel-spark-rest (also supports Swagger Java from Camel 2.17)
camel-undertow (also supports Swagger Java from Camel 2.17)

Rest DSL with Java

To use the Rest DSL in Java then just do as with regular Camel routes by extending the Rout eBui | der and define the routes in the conf i gur e()
method.

A simple REST service can be define as follows, where we use r est () to define the services as shown below:

prot ected RouteBuil der createRouteBuilder() throws Exception {
return new RouteBuil der() {
@verride
public void configure() throws Exception {
rest("/say")

.get("/hello").to("direct: hello")
.get("/bye").consunes("application/json").to("direct: bye")
.post("/bye").to("nock: update");

from("direct: hello")
.transforn().constant("Hello Wrld");

fronm("direct: bye")
.transform().constant ("Bye Wrld");

This defines a REST service with the following URL mappings:

Base Path URI Template Verb Consumes
| say /hello GET all
| say / bye GET appl i cation/json
| say / bye POST all

Notice that in the REST service we route directly to a Camel endpoint using the t o() . This is because the Rest DSL has a short-hand for routing directly
to an endpoint using t o() . An alternative is to embed a Camel route directly using r out e() - there is such an example further below.

Rest DSL with XML

The REST DSL supports the XML DSL also using either Spring or Blueprint. The example above can be define in XML as shown below:

https://cwiki.apache.org/confluence/display/CAMEL/Rest
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Netty+HTTP
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Netty4+HTTP
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Jetty
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/SERVLET
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Undertow
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java

<camel Context xm ns="http://canel.apache. org/ schena/ spri ng">
<rest path="/say">
<get wuri="/hello">
<to uri="direct:hello"/>
</ get>
<get uri="/bye" consunmes="application/json">
<to uri="direct: bye"/>
</ get>
<post uri="/bye">
<to uri="nock: update"/>
</ post >
</rest>
<r out e>
<fromuri="direct: hello"/>
<t ransfornme
<const ant >Hel | o Worl d</ const ant >
</transform
</route>
<r out e>
<fromuri="direct: bye"/>
<t ransfornmp
<const ant >Bye Wor | d</ const ant >
</transform
</route>
</ canel Cont ext >

Using Base Path

The REST DSL allows to define base path to make the DSL a bit more DRY. For example to define a customer path, we can set the base path inrest ("
/ cust omer ") and then provide the URI templates in the verbs, as shown below:

rest("/customers/")
.get("/{id}").to("direct:custonmerDetail")
.get("/{id}/orders").to("direct:custonerOders")
.post("/neworder").to("direct: custoner NewOrder");

And using XML DSL it becomes:

<rest path="/custoners/">
<get wuri="/{id}">
<to uri="direct:customerDetail"/>
</ get>
<get wuri="/{id}/orders">
<to uri="direct:customerOders"/>
</ get>
<post uri="/neworder">
<to uri="direct:customer NewOr der"/>
</ post >
</rest>

@ The REST DSL will take care of duplicate path separators when using base path and URI templates. In the example above the rest base path
ends with a slash (/) and the verb starts with a slash (/). But Apache Camel will take care of this and remove the duplicated slash.

It is not required to use both base path and URI templates. You can omit the bast path and define the base path and URI template in the verbs only. The
example above can be defined as:

<rest>
<get uri="/custoners/{id}">
<to uri="direct:customerDetail"/>
</ get>
<get uri="/custoners/{id}/orders">
<to uri="direct:customerOders"/>
</ get >
<post uri="/custoners/ neworder">
<to uri="direct:custonmer NewOr der"/>
</ post >
</rest>

Using Dynamic t o()
Available as of Camel 2.16

The Rest DSL supports the new . t oD or <t oD> as dynamic to in the r est - dsl . For example to do a request/reply over JMS where the queue name is
dynamic defined:

public void configure() throws Exception {
rest("/say")
.get("/hellol/{language}").toD("j ms: queue: hel | o- ${ header . | anguage}");

And in XML DSL

<rest uri="/say">
<get wuri="/hello//{language}">
<toD uri ="j nms: queue: hel | o- ${ header . | anguage}"/ >
</ get>
<rest>

See more details at Message Endpoint about the dynamic to, and what syntax it supports. By default it uses the Simple language, but it has more power
than so.

Embedding Camel Routes

Each of the rest service becomes a Camel route, so in the first example we have 2 x GET and 1 x POST REST service, which each become a Camel
route. We also have two regular Camel routes. Therefore we have 3 + 2 = 5 routes in total.

There are two route modes with the Rest DSL:

® mini using a singular to
®* embedding a Camel route using route

The first example is using the former with a singular t o(') . That's why we end up with 3 + 2 = 5 total routes.

The same example could use embedded Camel routes:

protected RouteBuil der createRouteBuilder() throws Exception {
return new RouteBuil der() {
@verride
public void configure() throws Exception {
rest("/say/ hello")
.get().route().transforn().constant("Hello World");
rest("/say/ bye")
.get().consunes("application/json").route().transform).constant("Bye Wrld").endRest ()
. post ().to("nock: update");

https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Simple

In the example above, we are embedding routes directly in the rest service using . rout e() .

Note: we need to use . endRest () to tell Camel where the route ends, so we can go back to the Rest DSL and continue defining REST
services.

@ Configuring route options

In the embedded route you can configure the route settings such as r out el d, aut oSt ar t up and various other options you can set on routes
today.

.get().route().routeld("nyRest Route").autoStartup(false).transforn().constant("Hello World");

Managing Rest Services

Each of the rest service becomes a Camel route, so in the first example we have 2 x GET and 1 x POST REST service, which each become a Camel
route. This makes it the same from Camel to manage and run these services - as they are just Camel routes. This means any tooling and API today that
deals with Camel routes, also work with the REST services.

This means you can use JMX to stop/start routes, and also get the JIMX metrics about the routes, such as number of message processed, and their
performance statistics.

There is also a Rest Registry JMX MBean that contains a registry of all REST services which has been defined.

Binding to POJOs Using

The Rest DSL supports automatic binding j son/ xm contents to/from POJOs using Camels Data Format. By default the binding mode is off, meaning
there is no automatic binding happening for incoming and outgoing messages.

You may want to use binding if you develop POJOs that maps to your REST services request and response types. This allows you as a developer to work
with the POJOs in Java code.

The binding modes are:

Binding Description
Mode
of f Binding is turned off. This is the default option.
aut o Binding is enabled and Camel is relaxed and support JSON, XML or both if the needed data formats are included in the classpath.

Note: if, for example, canel - j axb is not on the classpath, then XML binding is not enabled.

json Binding to/from JSON is enabled, and requires a json capabile data format on the classpath. By default Camel will use j son-j ackson
as the data format.

See the INFO box below for more details.
xm Binding to/from XML is enabled, and requires canel - j axb on the classpath.
See the INFO box below for more details.
j son_xni Biding to/from JSON and XML is enabled and requires both data formats to be on the classpath.

See the INFO box below for more details.

@ From Camel 2.14.1: when using canel - j axb for XML bindings, then you can use the option mnust BeJAXBEI enent to relax the output
message body must be a class with JAXB annotations. You can use this in situations where the message body is already in XML format, and
you want to use the message body as-is as the output type. If that is the case, then set the dat aFor mat Pr oper t y option nust BeJAXBEI enen
t=fal se.

@ From Camel 2.16.3: the binding from POJO to JSON/JAXB will only happen if the cont ent - t ype header includes the word j son or xmi
respectively. This allows you to specify a custom cont ent - t ype if the message body should not attempt to be marshaled using the binding.
For example if the message body is a custom binary payload etc.

To use binding you must include the necessary data formats on the classpath, such as canel - j axb and/or canel - j ackson. And then enable the
binding mode. You can configure the binding mode globally on the rest configuration, and then override per rest service as well.

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

To enable binding you configure this in Java DSL as shown below:

rest Configuration().conponent("restlet").host("local host").port(portNunm.bindi ngMode(Rest Bi ndi ngvbde. aut 0) ;

And in XML DSL:

<rest Confi guration bindi ngvbde="aut 0" conponent="restlet" port="8080"/>

When binding is enabled Camel will bind the incoming and outgoing messages automatic, accordingly to the content type of the message. If the message
is JSON, then JSON binding happens; and so if the message is XML then XML binding happens. The binding happens for incoming and reply messages.
The table below summaries what binding occurs for incoming and reply messages.

Message Body Direction Binding Mode(s) Message Body

XML Incoming POJO
® auto
¢ xni
® json_xm

POJO Outgoing XML
® auto
¢ xm
® json_xm

JSON Incoming POJO
® auto
® json
® json_xm

POJO Outgoing JSON
® auto
® json
® json_xni

When using binding you must also configure what POJO type to map to. This is mandatory for incoming messages but optional for outgoing.

For example, to map from xm / j son to a POJO class User Poj o you do this in Java DSL as shown below:

/1 configure to use restlet on local host with the given port
/1 and enabl e auto bi ndi ng npde
rest Confi guration().conmponent("restlet").host("local host").port(portNum.bindi ngMode(Rest Bi ndi nghbde. aut o) ;

/1 use the rest DSL to define the rest services
rest("/users/™")
. post ().type(UserPoj o. cl ass)
.to("direct: newdser");

Notice we use t ype to define the incoming type. We can optionally define an outgoing type (which can be a good idea, to make it known from the DSL and
also for tooling and JMX APIs to know both the incoming and outgoing types of the REST services.). To define the outgoing type we use out Type as
shown below:

/1 configure to use restlet on |ocal host with the given port
/1 and enabl e auto bindi ng node
rest Configuration().conponent("restlet").host("local host").port(portNum.bindi ngMode(Rest Bi ndi ngvbde. aut 0) ;

/] use the rest DSL to define the rest services
rest("/users/")
. post ().type(UserPoj o. cl ass) . out Type(Count r yPoj o. cl ass)
.to("direct: newdser");

The User Poj o is just a plain POJO with getter/setter as shown:

public class UserPojo {
private int id;
private String naneg;
public int getld() {

return id;

}

public void setld(int id) {
this.id =id;

}

public String getNanme() {
return name;

}

public void setName(String name) {
t hi s. nane = nane;

}

The User Poj o only supports JSON, as XML requires to use JAXB annotations, so we can add those annotations if we want to support XML also:

@Xn Root El enent (nane = "user")
@m Accessor Type(Xm AccessType. FI ELD)
public class UserPojo {

@ Attribute

private int id;

@m Attribute

private String naneg;

public int getld() {

return id;

}

public void setld(int id) {
this.id =id;

}

public String getName() {
return nane;

}
public void setNane(String nane) {

t hi s. nane = nane;

}

By having the JAXB annotations the POJO supports both JSON and XML bindings.

Configuring Rest DSL

The Rest DSL allows to configure the following options using a builder style

Option Default Description

conmpone The Camel Rest component to use for the REST transport, such asrest | et , spar k-rest.

nt
If no component has been explicit configured, then Camel will lookup if there is a Camel component that integrates with the
Rest DSL, or if a or g. apache. canel . spi . Rest Consumner Fact ory is registered in the registry. If either one is found, then
that is being used.

scheme | http The scheme to use for exposing the REST service. Usually ht t p or ht t ps is supported

host nare The hostname to use for exposing the REST service.

port

cont ext
Pat h

rest Hos
t NameRe
sol ver

bi nding | of f
Mode

skipBin true
di ngOnE
rror Code

enabl eC | fal se
ORS

j sonDat
aFor mat

xm Dat a
For mat

conmpone
nt Prope
rty

endpoi n
t Proper
ty

consune
r Proper
ty

The port number to use for exposing the REST service.

@ Note: if you use servlet component then the port number configured here does not apply, as the port number in use
is the actual port number the servlet component is using, e.g., if using Apache Tomcat its the tomcat HTTP port, if
using Apache Karaf it's the HTTP service in Karaf that uses port 8181 by default etc. Though in those situations
setting the port number here, allows tooling and JMX to know the port number, so its recommended to set the port
number to the number that the servlet engine uses.

Sets a leading context-path the REST services will be using. This can be used when using components such as SERVLET
where the deployed web application is deployed using a context-path.

If no hostname has been explicit configured, then this resolver is used to compute the hostname the REST service will be using.
The resolver supports:

® all Local | p (from Camel 2.17)

® | ocal Host Nane

® |ocallp
For Camel 2.16.x or older: localHostName

From Camel 2.17: al | Local I p

Whether binding is in use. See further above for more details.

Camel 2.14.1: Whether to skip binding on output if there is a custom HTTP error code header.
This allows to build custom error messages that do not bind to JSON/XML etc, as success messages otherwise will do.
See below for an example.

Camel 2.14.1: Whether to enable CORS headers in the HTTP response.

Name of specific JSON data format to use. By default j son- j ackson will be used.

Important: This option is only for setting a custom name of the data format, not to refer to an existing data format
instance.

@ Note: Currently Jackson is what we recommend and are using for testing.

Name of specific XML data format to use. By default j axb will be used.

Important: This option is only for setting a custom name of the data format, not to refer to an existing data format
instance.

@ Note: Currently only j axb is supported.

Allows to configure as many additional properties. This is used to configure component specific options such as for Restlet / Spa
rk-Rest etc. The options value can use the # notation to refer to a bean to lookup in the Registry

Allows to configure as many additional properties. This is used to configure endpoint specific options for Restlet / Spark-Rest et
c. The options value can use the # notation to refer to a bean to lookup in the Registry

Allows to configure as many additional properties. This is used to configure consumer specific options for Restlet / Spark-Rest e
tc. The options value can use the # notation to refer to a bean to lookup in the Registry

https://cwiki.apache.org/confluence/display/CAMEL/SERVLET
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Registry

dat aFor Allows to configure as many additional properties. This is used to configure the data format specific options.
mat Pr op
erty For example set property pr et t yPri nt =t r ue to have JSON outputted in pretty mode.
From Camel 2.14.1: the keys can be prefixed with either:

" json.in.

" json.out.

" xm.in.

" xm . out.

to denote that the option is only for either JSON or XML data format, and only for either the in or the out going. For example a
key with value xni . out . nust BeJAXBEI enent is only for the XML data format for the outgoing.

A key without a prefix is a common key for all situations.
From Camel 2.17: the options value can use the # notation to refer to a bean to lookup in the Registry
cor sHea Allows to configure custom CORS headers.

der Prop
erty

For example to configure to use the spark-rest component on port 9091, then we can do as follows:

rest Configuration().conponent ("spark-rest").port(9091). conponent Property("foo", "123");

And with XML DSL

<rest Configurati on conponent ="spark-rest" port="9091">
<conponent Property key="foo" val ue="123"/>
</ rest Configuration>

You can configure properties on these levels.

® component - Is used to set any options on the Component class. You can also configure these directly on the component.

® endpoint - Is used set any option on the endpoint level. Many of the Camel components has many options you can set on endpoint level.

® consumer - Is used to set any option on the consumer level. Some components has consumer options, which you can also configure from
endpoint level by prefixing the option with "consumer.”

® data format - Is used to set any option on the data formats. For example to enable pretty print in the JSON data format.

® cors headers - If cors is enabled, then custom CORS headers can be set. See below for the default values which are in used. If a custom header
is set then that value takes precedence over the default value.

You can set multiple options of the same level, so you can can for example configure 2 component options, and 3 endpoint options etc.

Enabling or Disabling Jackson JSON Features
Available as of Camel 2.15

When using JSON binding you may want to turn specific Jackson features on or off. For example to disable failing on unknown properties e.g., JSON input
has a property which cannot be mapped to a POJO, then configure this using the dat aFor mat Pr opert y as shown below:

rest Configuration().conponent("jetty").host("local host").port(getPort()).bindi ngMode(RestBi ndi nghvbde. j son)
. dat aFor mat Property("json.in. di sabl eFeatures", "FAI L_ON_UNKNOWN_PROPERTI ES") ;

You can disable more features by separating the values using comma, such as:
. dat aFor mat Property("j son.in. di sabl eFeatures", "FAl L_ON_UNKNOM_PROPERTI ES,

ADJUST_DATES_TO CONTEXT_TI ME_ZONE") ;

Likewise you can enable features using the enabl eFeat ur es such as:

https://cwiki.apache.org/confluence/display/CAMEL/Registry

rest Configuration().conponent("jetty").host("local host").port(getPort()).bindi ngMde(Rest Bi ndi nghbde. j son)
. dat aFor mat Property("j son.in. di sabl eFeatures", "FAl L_ON UNKNOMW_PROPERTI ES,
ADJUST_DATES_TO CONTEXT_TI ME_ZONE")

. dat aFor mat Property("json.in. enabl eFeatures", "FAlIL_ON_NUVBERS_FOR_ENUVS, USE_BI G DECI MAL_FOR_FLOATS");

The values that can be used for enabling and disabling features on Jackson are the names of the enums from the following three Jackson classes

® com fasterxnl .jackson. dat abi nd. Seri al i zati onFeat ure
® com fasterxnl .jackson. dat abi nd. Deseri al i zati onFeature
® com fasterxnl.jackson. dat abi nd. Mapper Feat ure

The rest configuration is of course also possible using XML DSL

<rest Configuration conponent="jetty" host="|ocal host" port="9090" bi ndi ngMode="j son">
<dat aFor mat Property key="json.in. di sabl eFeatures" val ue="FAl L_ON_UNKNOMN_PROPERTI ES,
ADJUST_DATES_TO CONTEXT_TI ME_ZONE"/ >

<dat aFor mat Property key="j son.in. enabl eFeatures" val ue="FAI L_ON_NUMBERS_FOR_ENUMS, USE_BI G_DECI MAL_FOR_FLOATS"
/>

</rest Configuration>

Default CORS Headers
Available as of Camel 2.14.1

If CORS is enabled then the follow headers is in use by default. You can configure custom CORS headers which takes precedence over the default value.

Key Value
Access- Control - Al | ow *
Oigin
Access-Control - Al | ow GET, HEAD, POST, PUT, DELETE, TRACE, OPTI ONS, CONNECT, PATCH
Met hods
Access-Control - Al | ow Origin, Accept, X- Request ed- Wt h, Cont ent - Type, Access- Cont r ol - Request - Met hod, Access-
Header s Control - Request - Header s

Access- Control - Max- Age 3600

Defining a Custom Error Message As-is

If you want to define custom error messages to be sent back to the client with a HTTP error code e.g., such as 400, 404 etc., then from Camel 2.14.1: you
just set a header with the key Exchange. HTTP_RESPONSE_CODE to the error code (must be 300+) such as 404. And then the message body with any
reply message, and optionally set the content-type header as well. There is a little example shown below:

rest Configuration().conponent("restlet").host("local host").port(portNum.bindi ngMode(Rest Bi ndi ngvbde. j son);

/1 use the rest DSL to define the rest services
rest("/users/")

.post("lives").type(UserPojo. class).out Type(CountryPoj o. cl ass)

.route()
. choi ce()
.when().sinple("${body.id} < 100")
. bean(new User ErrorService(), "idToLowError")
.otherw se()
. bean(new User Service(), "livesWere");

In this example if the input i d is a number that is below 100, we want to send back a custom error message, using the User Er r or Ser vi ce bean, which
is implemented as shown:

public class UserErrorService {
public void i dToLowError (Exchange exchange) {
exchange. getln().setBody("id value is too low');
exchange. get I n(). set Header (Exchange. CONTENT_TYPE, "text/plain");
exchange. get I n() . set Header (Exchange. HTTP_RESPONSE_CCDE, 400) ;

In the User Er r or Ser vi ce bean we build our custom error message, and set the HTTP error code to 400. This is important, as that tells r est - dsl that
this is a custom error message, and the message should not use the output POJO binding e.g., would otherwise bind to Count r yPoj o.

Returning a Custom Error Message for JsonPar ser Excepti on

From Camel 2.14.1: you return a custom message as-is (see previous section). So we can leverage this with Camel error handler to catch JsonPar ser Ex
cept i on, handle that exception and build our custom response message. For example to return a HTTP error code 400 with a hard-coded message, we
can do as shown below:

onExcepti on(JsonPar seExcepti on. cl ass)
. handl ed(true)
. set Header (Exchange. HTTP_RESPONSE_CODE, const ant (400))
. set Header (Exchange. CONTENT_TYPE, constant ("text/plain"))
.setBody().constant("Invalid json data");

Parameter Default Values

You can specify default values for parameters in the r est - dsl , such as the verbose parameter below:

rest("/customers/")
.get("/{id}").to("direct:custonerDetail")
.get("/{id}/orders")
. param() . nane("verbose") . type(Rest ParanType. query) . defaul t Val ue("fal se"). descri pti on("Verbose order
details").endParan()
.to("direct:custonerOders")
.post ("/neworder").to("direct: custoner NewOrder");

From Camel 2.17: the default value is automatically set as a header on the incoming Camel Message. So if the call the / cust oner s/ i d/ or der s do not
include a query parameter with key ver bose then Camel will now include a header with key ver bose=f al se because it was declared as the default
value. This functionality is only applicable for query parameters.

Integrating a Camel Component with Rest DSL

Any Apache Camel component can integrate with the Rest DSL if they can be used as a REST service(e.g., as a REST consumer in Camel lingo. To
integrate with the Rest DSL, then the component should implement the or g. apache. canel . spi . Rest Consuner Fact ory. The Rest DSL will then
invoke the cr eat eConsunmer method when it setup the Camel routes from the defined DSL. The component should then implement logic to create a
Camel consumer that exposes the REST services based on the given parameters, such as path, verb, and other options. For example see the source
code for canel -restl et, canel - spark-rest.

Swagger API

The Rest DSL supports Swagger Java by the canel - swagger - j ava module. See more details at Swagger and the canel - swagger - j ava example
from the Apache Camel distribution.

From Camel 2.16: you can define each parameter fine grained with details such as name, description, data type, parameter type and so on, using the <par
amp. For example to define the i d path parameter you can do as shown below:

<l-- this is arest GET to view an user by the given id -->

<get wuri="/{id}" outType="org.apache. canel . exanple.rest. User">
<descri ption>Fi nd user by id</description>
<param nane="id" type="path" description="The id of the user to get" dataType="int"/>
<to uri="bean: user Servi ce?nmet hod=get User (${ header.id})"/>

</ get >

https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java

And in Java DSL:

.get("/{id}").description("Find user by id").outType(User.class)
.param().nane("id").type(path).description("The id of the user to get").dataType("int").endParan()
.to("bean: user Servi ce?net hod=get User (${ header.id})")

The body parameter type requires to use body as well for the name. For example a REST PUT operation to create/update an user could be done as:

<!-- this is a rest PUT to create/update an user -->

<put type="org.apache. canel . exanpl e.rest. User">
<description>Updates or create a user</description>
<par am nanme="body" type="body" description="The user to update or create"/>
<to uri="bean: user Servi ce?nmet hod=updat eUser "/ >

</ put >

And in Java DSL:

.put ().description("Updates or create a user").type(User. class)
.paran().nane("body").type(body). description("The user to update or create").endParan()
.to("bean: user Servi ce?nmet hod=updat eUser ")

For an example see the exanpl es/ canel - exanpl e- servl et -rest -t ontat of the Apache Camel distribution.

See Also

DSL

Rest

Swagger Java

Spark-rest

How do | import rests from other XML files

https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Rest
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/How+do+I+import+rests+from+other+XML+files

	Rest DSL

