
Rest DSL

Rest DSL

Available as of Camel 2.14

Apache Camel offers a REST styled DSL which can be used with Java or XML. The intention is to allow end users to define REST services using a REST
style with verbs such as , etc., GET POST DELETE

How it works

The Rest DSL is a facade that builds endpoints as consumers for Camel routes. The actual REST transport is leveraged by using Camel REST Rest
components such as , , and others that has native REST integration.Restlet Spark-rest

Components supporting Rest DSL

The following Camel components supports the Rest DSL. See the bottom of this page for how to integrate a component with the Rest DSL.

camel-coap
camel-netty-http (also supports)Swagger Java
camel-netty4-http (also supports)Swagger Java
camel-jetty (also supports)Swagger Java
camel-restlet (also supports)Swagger Java
camel-servlet (also supports)Swagger Java
camel-spark-rest (also supports from)Swagger Java Camel 2.17
camel-undertow (also supports from)Swagger Java Camel 2.17

Rest DSL with Java

To use the Rest DSL in Java then just do as with regular Camel routes by extending the and define the routes in the RouteBuilder configure()
method.

A simple REST service can be define as follows, where we use to define the services as shown below:rest()

 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 rest("/say")
 .get("/hello").to("direct:hello")
 .get("/bye").consumes("application/json").to("direct:bye")
 .post("/bye").to("mock:update");

 from("direct:hello")
 .transform().constant("Hello World");
 from("direct:bye")
 .transform().constant("Bye World");
 }
 };
 }

This defines a REST service with the following URL mappings:

Base Path URI Template Verb Consumes

/say /hello GET all

/say /bye GET application/json

/say /bye POST all

Notice that in the REST service we route directly to a Camel endpoint using the . This is because the Rest DSL has a short-hand for routing directly to()
to an endpoint using . An alternative is to embed a Camel route directly using - there is such an example further below.to() route()

Rest DSL with XML

The REST DSL supports the XML DSL also using either Spring or Blueprint. The example above can be define in XML as shown below:

https://cwiki.apache.org/confluence/display/CAMEL/Rest
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Netty+HTTP
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Netty4+HTTP
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Jetty
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/SERVLET
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Undertow
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <rest path="/say">
 <get uri="/hello">
 <to uri="direct:hello"/>
 </get>
 <get uri="/bye" consumes="application/json">
 <to uri="direct:bye"/>
 </get>
 <post uri="/bye">
 <to uri="mock:update"/>
 </post>
 </rest>
 <route>
 <from uri="direct:hello"/>
 <transform>
 <constant>Hello World</constant>
 </transform>
 </route>
 <route>
 <from uri="direct:bye"/>
 <transform>
 <constant>Bye World</constant>
 </transform>
 </route>
 </camelContext>

Using Base Path

The REST DSL allows to define base path to make the DSL a bit more DRY. For example to define a customer path, we can set the base path in rest("
 and then provide the URI templates in the verbs, as shown below:/customer")

 rest("/customers/")
 .get("/{id}").to("direct:customerDetail")
 .get("/{id}/orders").to("direct:customerOrders")
 .post("/neworder").to("direct:customerNewOrder");

And using XML DSL it becomes:

 <rest path="/customers/">
 <get uri="/{id}">
 <to uri="direct:customerDetail"/>
 </get>
 <get uri="/{id}/orders">
 <to uri="direct:customerOrders"/>
 </get>
 <post uri="/neworder">
 <to uri="direct:customerNewOrder"/>
 </post>
 </rest>

It is not required to use both base path and URI templates. You can omit the bast path and define the base path and URI template in the verbs only. The
example above can be defined as:

The REST DSL will take care of duplicate path separators when using base path and URI templates. In the example above the rest base path
ends with a slash () and the verb starts with a slash (). But Apache Camel will take care of this and remove the duplicated slash./ /

 <rest>
 <get uri="/customers/{id}">
 <to uri="direct:customerDetail"/>
 </get>
 <get uri="/customers/{id}/orders">
 <to uri="direct:customerOrders"/>
 </get>
 <post uri="/customers/neworder">
 <to uri="direct:customerNewOrder"/>
 </post>
 </rest>

Using Dynamic to()

Available as of Camel 2.16

The supports the new or as dynamic to in the . For example to do a request/reply over where the queue name is Rest DSL .toD <toD> rest-dsl JMS
dynamic defined:

 public void configure() throws Exception {
 rest("/say")
 .get("/hello/{language}").toD("jms:queue:hello-${header.language}");
}

And in XML DSL

<rest uri="/say">
 <get uri="/hello//{language}">
 <toD uri="jms:queue:hello-${header.language}"/>
 </get>
<rest>

See more details at about the dynamic to, and what syntax it supports. By default it uses the language, but it has more power Message Endpoint Simple
than so.

Embedding Camel Routes

Each of the rest service becomes a Camel route, so in the first example we have and REST service, which each become a Camel 2 x GET 1 x POST
route. We also have two regular Camel routes. Therefore we have routes in total. 3 + 2 = 5

There are two route modes with the Rest DSL:

mini using a singular to
embedding a Camel route using route

The first example is using the former with a singular . That's why we end up with total routes.to() 3 + 2 = 5

The same example could use embedded Camel routes:

 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 rest("/say/hello")
 .get().route().transform().constant("Hello World");
 rest("/say/bye")
 .get().consumes("application/json").route().transform().constant("Bye World").endRest()
 .post().to("mock:update");
 };
 }

https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Simple

In the example above, we are embedding routes directly in the rest service using ..route()

Managing Rest Services

Each of the rest service becomes a Camel route, so in the first example we have and REST service, which each become a Camel 2 x GET 1 x POST
route. This makes it from Camel to manage and run these services - as they are just Camel routes. This means any tooling and API today that the same
deals with Camel routes, also work with the REST services.

This means you can use JMX to stop/start routes, and also get the JMX metrics about the routes, such as number of message processed, and their
performance statistics.

There is also a Rest Registry JMX MBean that contains a registry of all REST services which has been defined.

Binding to POJOs Using

The Rest DSL supports automatic binding contents to/from POJOs using Camels . By default the binding mode is off, meaning json/xml Data Format
there is no automatic binding happening for incoming and outgoing messages.

You may want to use binding if you develop POJOs that maps to your REST services request and response types. This allows you as a developer to work
with the POJOs in Java code.

The binding modes are:

Binding
Mode

Description

off Binding is turned off. This is the default option.

auto Binding is enabled and Camel is relaxed and support JSON, XML or both if the needed data formats are included in the classpath.

Note: if, for example, is not on the classpath, then XML binding is not enabled.camel-jaxb

json Binding to/from JSON is enabled, and requires a json capabile data format on the classpath. By default Camel will use json-jackson
as the data format.

See the INFO box below for more details.

xml Binding to/from XML is enabled, and requires on the classpath. camel-jaxb

See the INFO box below for more details.

json_xml Biding to/from JSON and XML is enabled and requires both data formats to be on the classpath.

See the INFO box below for more details.

To use binding you must include the necessary data formats on the classpath, such as camel-jaxb and/or camel-jackson. And then enable the

binding mode. You can configure the binding mode globally on the rest configuration, and then override per rest service as well.

Note: we need to use to tell Camel where the route ends, so we can to the Rest DSL and continue defining REST .endRest() go back
services.

Configuring route options

In the embedded route you can configure the route settings such as , and various other options you can set on routes routeId autoStartup
today.

.get().route().routeId("myRestRoute").autoStartup(false).transform().constant("Hello World");

From : when using for XML bindings, then you can use the option to relax the output Camel 2.14.1 camel-jaxb mustBeJAXBElement
message body must be a class with JAXB annotations. You can use this in situations where the message body is already in XML format, and
you want to use the message body as-is as the output type. If that is the case, then set the option dataFormatProperty mustBeJAXBElemen
t=false.

From : the binding from POJO to JSON/JAXB will only happen if the header includes the word or Camel 2.16.3 content-type json xml
respectively. This allows you to specify a custom if the message body should not attempt to be marshaled using the binding. content-type
For example if the message body is a custom binary payload etc.

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

To enable binding you configure this in Java DSL as shown below:

restConfiguration().component("restlet").host("localhost").port(portNum).bindingMode(RestBindingMode.auto);

And in XML DSL:

<restConfiguration bindingMode="auto" component="restlet" port="8080"/>

When binding is enabled Camel will bind the incoming and outgoing messages automatic, accordingly to the content type of the message. If the message
is JSON, then JSON binding happens; and so if the message is XML then XML binding happens. The binding happens for incoming and reply messages.
The table below summaries what binding occurs for incoming and reply messages.

Message Body Direction Binding Mode(s) Message Body

XML Incoming
auto
xml
json_xml

POJO

POJO Outgoing
auto
xml
json_xml

XML

JSON Incoming
auto
json
json_xml

POJO

POJO Outgoing
auto
json
json_xml

JSON

When using binding you must also configure what POJO type to map to. This is mandatory for incoming messages but optional for outgoing.

For example, to map from to a POJO class you do this in Java DSL as shown below:xml/json UserPojo

// configure to use restlet on localhost with the given port
// and enable auto binding mode
restConfiguration().component("restlet").host("localhost").port(portNum).bindingMode(RestBindingMode.auto);

// use the rest DSL to define the rest services
rest("/users/")
 .post().type(UserPojo.class)
 .to("direct:newUser");

Notice we use to define the incoming type. We can optionally define an outgoing type (which can be a good idea, to make it known from the DSL and type
also for tooling and JMX APIs to know both the incoming and outgoing types of the REST services.). To define the outgoing type we use as outType
shown below:

// configure to use restlet on localhost with the given port
// and enable auto binding mode
restConfiguration().component("restlet").host("localhost").port(portNum).bindingMode(RestBindingMode.auto);

// use the rest DSL to define the rest services
rest("/users/")
 .post().type(UserPojo.class).outType(CountryPojo.class)
 .to("direct:newUser");

The UserPojo is just a plain POJO with getter/setter as shown:

public class UserPojo {
 private int id;
 private String name;
 public int getId() {
 return id;
 }
 public void setId(int id) {
 this.id = id;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}

The only supports JSON, as XML requires to use JAXB annotations, so we can add those annotations if we want to support XML also:UserPojo

@XmlRootElement(name = "user")
@XmlAccessorType(XmlAccessType.FIELD)
public class UserPojo {
 @XmlAttribute
 private int id;
 @XmlAttribute
 private String name;
 public int getId() {
 return id;
 }
 public void setId(int id) {
 this.id = id;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}

By having the JAXB annotations the POJO supports both JSON and XML bindings.

Configuring Rest DSL

The Rest DSL allows to configure the following options using a builder style

Option Default Description

compone
nt

 The Camel Rest component to use for the REST transport, such as ., restlet spark-rest

If no component has been explicit configured, then Camel will lookup if there is a Camel component that integrates with the
Rest DSL, or if a is registered in the registry. If either one is found, then org.apache.camel.spi.RestConsumerFactory
that is being used.

scheme http The scheme to use for exposing the REST service. Usually or is supportedhttp https

hostname The hostname to use for exposing the REST service.

port The port number to use for exposing the REST service.

context
Path

 Sets a leading context-path the REST services will be using. This can be used when using components such as SERVLET
where the deployed web application is deployed using a context-path.

restHos
tNameRe
solver

 If no hostname has been explicit configured, then this resolver is used to compute the hostname the REST service will be using.

The resolver supports:

allLocalIp ()from Camel 2.17
localHostName
localIp

For or older: Camel 2.16.x localHostName

From : Camel 2.17 allLocalIp

binding
Mode

off Whether binding is in use. See further above for more details.

skipBin
dingOnE
rrorCode

true Camel 2.14.1: Whether to skip binding on output if there is a custom HTTP error code header.

This allows to build custom error messages that do not bind to JSON/XML etc, as success messages otherwise will do.

See below for an example.

enableC
ORS

false Camel 2.14.1: Whether to enable CORS headers in the HTTP response.

jsonDat
aFormat

 Name of specific JSON data format to use. By default will be used.json-jackson

xmlData
Format

 Name of specific XML data format to use. By default will be used.jaxb

compone
ntPrope
rty

 Allows to configure as many additional properties. This is used to configure component specific options such as for / Restlet Spa
 etc. Trk-Rest he options value can use the notation to refer to a bean to lookup in the # Registry

endpoin
tProper
ty

 Allows to configure as many additional properties. This is used to configure endpoint specific options for Restlet / Spark-Rest et
c. The options value can use the notation to refer to a bean to lookup in the # Registry

consume
rProper
ty

 Allows to configure as many additional properties. This is used to configure consumer specific options for Restlet / Spark-Rest e
tc. The options value can use the notation to refer to a bean to lookup in the # Registry

Note: if you use servlet component then the port number configured here does not apply, as the port number in use
is the actual port number the servlet component is using, e.g., if using Apache Tomcat its the tomcat HTTP port, if
using Apache Karaf it's the HTTP service in Karaf that uses port 8181 by default etc. Though in those situations
setting the port number here, allows tooling and JMX to know the port number, so its recommended to set the port
number to the number that the servlet engine uses.

Important: This option is only for setting a custom name of the data format, not to refer to an existing data format
instance.

Note: Currently Jackson is what we recommend and are using for testing.

Important: This option is only for setting a custom name of the data format, not to refer to an existing data format
instance.

Note: Currently only is supported.jaxb

https://cwiki.apache.org/confluence/display/CAMEL/SERVLET
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Restlet
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/Registry

dataFor
matProp
erty

 Allows to configure as many additional properties. This is used to configure the data format specific options.

For example set property to have JSON outputted in pretty mode.prettyPrint=true

From the keys can be prefixed with either:Camel 2.14.1:

json.in.
json.out.
xml.in.
xml.out.

to denote that the option is only for either JSON or XML data format, and only for either the in or the out going. For example a
key with value is only for the XML data format for the outgoing.xml.out.mustBeJAXBElement

A key without a prefix is a common key for all situations.

From : the options value can use the notation to refer to a bean to lookup in the Camel 2.17 # Registry

corsHea
derProp
erty

 Allows to configure custom CORS headers.

For example to configure to use the spark-rest component on port , then we can do as follows:9091

restConfiguration().component("spark-rest").port(9091).componentProperty("foo", "123");

And with XML DSL

<restConfiguration component="spark-rest" port="9091">
 <componentProperty key="foo" value="123"/>
</restConfiguration>

You can configure properties on these levels.

component - Is used to set any options on the Component class. You can also configure these directly on the component.
endpoint - Is used set any option on the endpoint level. Many of the Camel components has many options you can set on endpoint level.
consumer - Is used to set any option on the consumer level. Some components has consumer options, which you can also configure from
endpoint level by prefixing the option with "consumer."
data format - Is used to set any option on the data formats. For example to enable pretty print in the JSON data format.
cors headers - If cors is enabled, then custom CORS headers can be set. See below for the default values which are in used. If a custom header
is set then that value takes precedence over the default value.

You can set multiple options of the same level, so you can can for example configure 2 component options, and 3 endpoint options etc.

Enabling or Disabling Jackson JSON Features

Available as of Camel 2.15

When using JSON binding you may want to turn specific Jackson features on or off. For example to disable failing on unknown properties e.g., JSON input
has a property which cannot be mapped to a POJO, then configure this using the as shown below:dataFormatProperty

restConfiguration().component("jetty").host("localhost").port(getPort()).bindingMode(RestBindingMode.json)
 .dataFormatProperty("json.in.disableFeatures", "FAIL_ON_UNKNOWN_PROPERTIES");

You can disable more features by separating the values using comma, such as:

 .dataFormatProperty("json.in.disableFeatures", "FAIL_ON_UNKNOWN_PROPERTIES,
ADJUST_DATES_TO_CONTEXT_TIME_ZONE");

Likewise you can enable features using the such as:enableFeatures

https://cwiki.apache.org/confluence/display/CAMEL/Registry

restConfiguration().component("jetty").host("localhost").port(getPort()).bindingMode(RestBindingMode.json)
 .dataFormatProperty("json.in.disableFeatures", "FAIL_ON_UNKNOWN_PROPERTIES,
ADJUST_DATES_TO_CONTEXT_TIME_ZONE")
 .dataFormatProperty("json.in.enableFeatures", "FAIL_ON_NUMBERS_FOR_ENUMS,USE_BIG_DECIMAL_FOR_FLOATS");

The values that can be used for enabling and disabling features on Jackson are the names of the enums from the following three Jackson classes

com.fasterxml.jackson.databind.SerializationFeature
com.fasterxml.jackson.databind.DeserializationFeature
com.fasterxml.jackson.databind.MapperFeature

The rest configuration is of course also possible using XML DSL

<restConfiguration component="jetty" host="localhost" port="9090" bindingMode="json">
 <dataFormatProperty key="json.in.disableFeatures" value="FAIL_ON_UNKNOWN_PROPERTIES,
ADJUST_DATES_TO_CONTEXT_TIME_ZONE"/>
 <dataFormatProperty key="json.in.enableFeatures" value="FAIL_ON_NUMBERS_FOR_ENUMS,USE_BIG_DECIMAL_FOR_FLOATS"
/>
</restConfiguration>

Default CORS Headers

Available as of Camel 2.14.1

If CORS is enabled then the follow headers is in use by default. You can configure custom CORS headers which takes precedence over the default value.

Key Value

Access-Control-Allow-
Origin

*

Access-Control-Allow-
Methods

GET, , , , , , HEAD POST PUT , DELETE TRACE , OPTIONS CONNECT PATCH

Access-Control-Allow-
Headers

Origin, , , , , Accept X-Requested-With Content-Type Access-Control-Request-Method Access-
Control-Request-Headers

Access-Control-Max-Age 3600

Defining a Custom Error Message As-is

If you want to define custom error messages to be sent back to the client with a HTTP error code e.g., such as etc., then from : you , 400 404 Camel 2.14.1
just set a header with the key to the error code (must be 300+) such as 404. And then the message body with any Exchange.HTTP_RESPONSE_CODE
reply message, and optionally set the content-type header as well. There is a little example shown below:

restConfiguration().component("restlet").host("localhost").port(portNum).bindingMode(RestBindingMode.json);

// use the rest DSL to define the rest services
rest("/users/")
 .post("lives").type(UserPojo.class).outType(CountryPojo.class)
 .route()
 .choice()
 .when().simple("${body.id} < 100")
 .bean(new UserErrorService(), "idToLowError")
 .otherwise()
 .bean(new UserService(), "livesWhere");

In this example if the input is a number that is below 100, we want to send back a custom error message, using the bean, which id UserErrorService
is implemented as shown:

public class UserErrorService {
 public void idToLowError(Exchange exchange) {
 exchange.getIn().setBody("id value is too low");
 exchange.getIn().setHeader(Exchange.CONTENT_TYPE, "text/plain");
 exchange.getIn().setHeader(Exchange.HTTP_RESPONSE_CODE, 400);
 }
}

In the bean we build our custom error message, and set the HTTP error code to . This is important, as that tells that UserErrorService 400 rest-dsl
this is a custom error message, and the message should not use the output POJO binding e.g., would otherwise bind to .CountryPojo

Returning a Custom Error Message for JsonParserException

From : you return a custom message as-is (see previous section). So we can leverage this with Camel error handler to catch Camel 2.14.1 JsonParserEx
, handle that exception and build our custom response message. For example to return a HTTP error code with a hard-coded message, we ception 400

can do as shown below:

onException(JsonParseException.class)
 .handled(true)
 .setHeader(Exchange.HTTP_RESPONSE_CODE, constant(400))
 .setHeader(Exchange.CONTENT_TYPE, constant("text/plain"))
 .setBody().constant("Invalid json data");

Parameter Default Values

You can specify default values for parameters in the , such as the verbose parameter below:rest-dsl

 rest("/customers/")
 .get("/{id}").to("direct:customerDetail")
 .get("/{id}/orders")
 .param().name("verbose").type(RestParamType.query).defaultValue("false").description("Verbose order
details").endParam()
 .to("direct:customerOrders")
 .post("/neworder").to("direct:customerNewOrder");

From : the default value is automatically set as a header on the incoming Camel . So if the call the do not Camel 2.17 Message /customers/id/orders
include a query parameter with key then Camel will now include a header with key because it was declared as the default verbose verbose=false
value. This functionality is only applicable for query parameters.

Integrating a Camel Component with Rest DSL

Any Apache Camel component can integrate with the Rest DSL if they can be used as a REST service(e.g., as a REST consumer in Camel lingo. To
integrate with the Rest DSL, then the component should implement the . The Rest DSL will then org.apache.camel.spi.RestConsumerFactory
invoke the method when it setup the Camel routes from the defined DSL. The component should then implement logic to create a createConsumer
Camel consumer that exposes the REST services based on the given parameters, such as path, verb, and other options. For example see the source
code for , .camel-restlet camel-spark-rest

Swagger API

The Rest DSL supports by the module. See more details at and the example Swagger Java camel-swagger-java Swagger camel-swagger-java
from the Apache Camel distribution.

From : you can define each parameter fine grained with details such as name, description, data type, parameter type and so on, using the Camel 2.16 <par
. For example to define the path parameter you can do as shown below:am> id

<!-- this is a rest GET to view an user by the given id -->
<get uri="/{id}" outType="org.apache.camel.example.rest.User">
 <description>Find user by id</description>
 <param name="id" type="path" description="The id of the user to get" dataType="int"/>
 <to uri="bean:userService?method=getUser(${header.id})"/>
</get>

https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java

And in Java DSL:

.get("/{id}").description("Find user by id").outType(User.class)
 .param().name("id").type(path).description("The id of the user to get").dataType("int").endParam()
 .to("bean:userService?method=getUser(${header.id})")

The body parameter type requires to use body as well for the name. For example a REST operation to create/update an user could be done as:PUT

<!-- this is a rest PUT to create/update an user -->
<put type="org.apache.camel.example.rest.User">
 <description>Updates or create a user</description>
 <param name="body" type="body" description="The user to update or create"/>
 <to uri="bean:userService?method=updateUser"/>
</put>

And in Java DSL:

.put().description("Updates or create a user").type(User.class)
 .param().name("body").type(body).description("The user to update or create").endParam()
 .to("bean:userService?method=updateUser")

For an example see the of the Apache Camel distribution.examples/camel-example-servlet-rest-tomcat

See Also

DSL
Rest
Swagger Java
Spark-rest
How do I import rests from other XML files

https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Rest
https://cwiki.apache.org/confluence/display/CAMEL/Swagger+Java
https://cwiki.apache.org/confluence/display/CAMEL/Spark-rest
https://cwiki.apache.org/confluence/display/CAMEL/How+do+I+import+rests+from+other+XML+files

	Rest DSL

