
ASN.1
ASN.1 encoder/decoder

ASN.1 encoder/decoder
Components

POJOs
PDUs/TLVs
ByteBuffer

Compiler
Processing

Encoder
Decoder
Performance

Implementations

Components

Communications between clients and server can be seen as a two ways / multi system. The client submits a request to the server, which replies.layers

Layers are just used to facilitate the implementation of this communication. From the developer point of view, working on a specific level, he just has to
know the two layers above and under, but can be seen as a communication at she same level between the client and the server. Here is a view of these
layers :

We have depicted three layers:

Request/Response: This is the more abstract layer. Exchanged messages are 'human readable'. Each message is a Java Bean, containing all
the information about a Request or a Response.
PDU: As communication petween the Client and the Server is done through a network, we need to transform the beans to something more
'network friendly'. The data are stored in PDU, or rotocol ata nit. Those PDU contain an encoded form of messages, specified in P D U RFC 2251
and ASN.1
ByteBuffers: To transfer PDU from/to Client to/from Server, we need to store bytes in a structure that will permit to deal with network latency.
Thus we are using byte buffers, which allow us to send pieces of PDU until the whole PDU has been transmitted. (Note : is also a Java ByteBuffer
NIO class, but can be seen just as a byte container. It could have been something totally different from the NIO class).

This layering allows many different implementations.

One can also imagine inter-layers used to trace debug informations.

Inter layer communication rely on a pipe-line: each layer push some piece of information to the next layer (up or down), and so on.

Each layer may implement its own strategy to fulfill the reception and transmission of the data it is responsible of :

emission
asynchronous push
synchronous push

http://www.faqs.org/rfcs/rfc2251.html
http://asn1.elibel.tm.fr/en/standards/index.htm
http://java.sun.com/j2se/1.4.2/docs/api/java/nio/ByteBuffer.html
http://java.sun.com/j2se/1.4.2/docs/api/java/nio/ByteBuffer.html

established and dedicated channel
multiplexed channel

reception
listener
established and dedicated channel
multiplexed channel

POJOs

POJOs are Java classes that contain high level informations.

A client create an of a class to communicate with the server, which create an other one to reply. They implement a kind of instance application layer
between clients and server.

Ideally, they are generated by an compiler, but can be hand crafted.ASN.1

PDUs/TLVs

PDU stands for rotocol ata nit. An ASN.1 encoded element is stored in a PDU. This is what is transfered between a client and a server.P D U

TLV stands for . A PDU is made of s. Each represent either a primitive element, and it has a alue, or a constructed element, Type/Length/Value TLV TLV V
and the alue is itself one ore more (The can contain more than one). The structure is like a tree, where the is the whole tree, and V TLV V TLV PDU PDU
where are leaves (primitives) and branches (constructed)TLV

Further information about s can be found here :TLV

TLV Page Info: Informations about sTlv

ByteBuffer

Buffering the incoming request or the ourgoing response is essential. As a request or a response can be huge (for example, if we want to store images), it
is necessary to store bytes in buffers in order to be able to pipeline the processing. Flushing informations byte by byte is totally insane, from the network
point of view.

We are using the structure to store chunks of information, before pushing them on the network, and reversly, store incoming bytes into NIO ByteBuffer
buffers before processing the request.

Compiler

TO BE DONE ...

Processing

There are two kind of processing: and . Encoding is quite easy, decoding is much more complicated.encoding decoding

Encoder

The encoding process is quite easy. As we know what has to be encoded, the structure of the PDU is somehow dependent on the structure of the POJO
which contains the data. The only tricky things is the part, which has to be computed. As a may have a part which is itself one or more Length TLV V TLV
s, its part will be the sum of each included s length. This is typically a recursive processing, but we can also process the POJO in two passes :L TLV

the first pass compute each length
the second pass generate the PDU

The page gives informations about the encoding process.Encoding Asn.1

Decoder

The decoding process is a loop which reads PDUs and constructs objects on the fly. It can stop and restart without loosing information, as PDU may be
very long (it also means that we must store a current state for each decoding).

The page gives informations about the encoding process.Decoding Asn.1

Performance

Important

Important : decoding an ASN.1 PDU is generally not possible if you have no knowledge of the grammar being decoded. To limit the size of
PDUs, the encoding schemes used (PER, DER, BER, ...) permits the elimination of some TL if the constructed TLV that encapsulate the
previous one is unambiguiously known. One who want to decode a PDU know which grammar has been used.MUST

https://cwiki.apache.org/confluence/display/DIRxASN1/TLV+Page+Info
http://java.sun.com/j2se/1.4.2/docs/api/java/nio/ByteBuffer.html
#
#

TODO : performance against memory/scalability/failover
TODO : which kind of performance should we deliver? Maximum throughput = bandwith/average PDU size. For instance, with a 1Gb network connection,
assuming that we have an average PDU size of 100 bytes, the system must deliver 1 M Pdu/s to saturate the network.

Actually, the new decoder eats 110 000 PDU or 37 000 SearchResultEntry PDU per second on my 2.8Ghz computer, but we have to take BindRequest
into account the works that must be done aside.

Implementations

Three codecs are currently available :

LdapCodec which encodes and decodes LDAP messages
KerberosCodec which encodes an decodes KERBEROS messages
SpnegoCodec which encodes an decodes SPNEGO messages

https://cwiki.apache.org/confluence/display/DIRxASN1/BindRequest
https://cwiki.apache.org/confluence/display/DIRxASN1/LdapCodec
https://cwiki.apache.org/confluence/display/DIRxASN1/Kerberos
https://cwiki.apache.org/confluence/display/DIRxASN1/SpnegoCodec

	ASN.1

