
1.
2.

1.

2.
3.

Starting with DAS
Unable to render

{include} The
included page could
not be found.

Starting with DAS
This page provides links to DAS samples and explains a simple "how to" and gives step-by-step instructions to check one of the
DAS features - ColumnConverter. Other DAS features can be tried on similar lines.

Many sample examples demonstrating different DAS features are available on https://svn.apache.org/repos/asf/incubator/tuscany
 e.g./java/das/samples

companyweb-webapp - tomcat based web sample
customer - J2SE based standalone application

Check readme files e.g. For companyweb https://svn.apache.org/repos/asf/incubator/tuscany/java/das/samples/company-webapp
/readme.htm
for basic steps on how to get the sample running.

Once the sample is running, parts of sample can be modified based on the requirement or new code can be added from-scratch.
Many features supported by DAS are listed in User Guide - http://incubator.apache.org/tuscany/rdb-das-user-guide.html

This document details the changes needed to different part of the web sample (companyweb) to experiment with more features of
DAS than just basic CRUD.Let us take example of checking how to use ColumnConverters. For details on feature testing, check
Tests under https://svn.apache.org/repos/asf/incubator/tuscany/java/das/rdb/src/test/

1> As a first step you need to implement interface in a class to achieve the requiredConverter
column conversion. Check org.apache.tuscany.das.rdb.test.mappings.StringObfuscationConverter from the svn repository for
example of converter. Make your converter class available in (Tomcat root)webapps/companyweb-webapp/WEB-INF/classes.

2> DAS functions based on external Configuration, e.g. CompanyConfig.xml file in companyweb sample. The purpose of this
Config file to supply information for DataSource connection, Commands (SQL) (that DAS can execute against Database) and
Database schema like - Table/Columns, Relationship and so forth. Please check Architecture Guide for complete details about
Config.xsd ()
at . Modify Config to get converter working. The http://incubator.apache.org/tuscany/rdb-das-architecture-guide.html
<ConnectionInfo> element should match the resource name from server.xml for DataSource.Add a <Table> which has a column
with converter class name of the class you just created. Add a <Command> with kind="Select" for this table/column e.g.

<Command name="getFirstCustomer" SQL="Select * from CUSTOMER where ID = 1" kind="Select"/>

<Table tableName="CUSTOMER">
<Column columnName="ID" primaryKey="true"/>
<Column columnName="LASTNAME" converterClassName="org.apache.tuscany.das.rdb.test.mappings.
StringObfuscationConverter"/>
</Table>

3> Now the code and config setup is complete. What remains is calling the new command from .jsp and
servlet. Follow the technique similar to CompanyClient.java and Company.jsp to call the new command. The returned results will
verify that the converter is called and the column value from database is converted based on converter logic.
4> For more details check the test cases from ConverterTests in https://svn.apache.org/repos/asf/incubator/tuscany/java/das/rdb/src

./test/

Assumption: Tomcat version 5.5.* or 6.0.10 , Derby version 10.1.2.1.

Troubleshooting Checkpoints: Check the following and if still having issues , report at http://incubator.apache.org/tuscany/issue-
tracking.html

All libraries are present in (Tomcat root)/webapps/companyweb/WEB-INF/lib (these libs can
be taken from companyweb sample or can be downloaded from web)
i) common-(latest version).jar
ii) ecore-(latest version).jar
iii) ecore-change-(latest version).jar
iv) ecore-xmi-(latest version).jar
v) log4j-(latest version).jar
vi) sdo-api-xxx.jar
vii) tuscany-das-rdb-xxx.jar
viii) tuscany-sdo-xxx.jar
ix) xsd-(latest version).jar
x) derby driver jar - or whichever database you are planning to use
The Database exists with required tables and data.
WEB-INF/web.xml has entry under welcome-file-list for required .jsp like -

Unable to render
{include}

https://svn.apache.org/repos/asf/incubator/tuscany/java/das/samples
https://svn.apache.org/repos/asf/incubator/tuscany/java/das/samples
https://svn.apache.org/repos/asf/incubator/tuscany/java/das/samples/company-webapp/readme.htm
https://svn.apache.org/repos/asf/incubator/tuscany/java/das/samples/company-webapp/readme.htm
http://incubator.apache.org/tuscany/rdb-das-user-guide.html
https://svn.apache.org/repos/asf/incubator/tuscany/java/das/rdb/src/test/
http://incubator.apache.org/tuscany/rdb-das-architecture-guide.html
https://svn.apache.org/repos/asf/incubator/tuscany/java/das/rdb/src/test/
https://svn.apache.org/repos/asf/incubator/tuscany/java/das/rdb/src/test/
http://incubator.apache.org/tuscany/issue-tracking.html
http://incubator.apache.org/tuscany/issue-tracking.html

3.

4.

5.

<web-app>
 <display-name>Tuscany DAS sample Company WEB</display-name>

 <welcome-file-list id="WelcomeFileList">
 <welcome-file>Company.jsp</welcome-file>
 </welcome-file-list>
</web-app>

META-INF/context.xml has entry for the datasource the sample is using like -

<?xml version="1.0" encoding="UTF-8"?>
<Context path="/DAS Stand alone app" debug="5" reloadable="true" crossContext="true">
 <Manager pathname=""/>
 <ResourceLink name="jdbc/dastest" global="jdbc/dastest" type="javax.sql.DataSource"
/>
</Context>

(Tomcat root)/conf server.xml has entry similar to below for the datasource -

<Resource name="jdbc/dastest"
 type="javax.sql.DataSource" auth="Container"
 description="Derby database for DAS Company sample"
 maxActive="100" maxIdle="30" maxWait="10000"
 username="" password=""
 driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
 url="jdbc:derby:c:\apache-tomcat-5.5.20\Databases/dastest;create=true"/>

	Starting with DAS

