
Delayer
Delayer

The Delayer Pattern allows you to delay the delivery of messages to some destination.

Delayer
The expression is a value in millis to wait from the current time, so the expression should just be .3000
However you can use a long value for a fixed value to indicate the delay in millis.
See the Spring DSL samples for Delayer.
Using Delayer in Java DSL
See this ticket: https://issues.apache.org/jira/browse/CAMEL-2654

Options
confluenceTableSmall

Name Default
Value

Description

asyncDelayed false If enabled then delayed messages happens asynchronously using a scheduled thread pool.Camel 2.4:

executorServiceRef Refers to a custom to be used if has been enabled.Camel 2.4: Thread Pool asyncDelay

callerRunsWhenRejec
ted

true Is used if was enabled. This controls if the caller thread should execute the task if the thread Camel 2.4: asyncDelayed
pool rejected the task.

Using the Fluent Builders

The example below will delay all messages received on 1 second before sending them to .seda:b mock:result

{snippet:id=ex2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DelayerTest.java}

You can just delay things a fixed amount of time from the point at which the delayer receives the message. For example to delay things 2 seconds

delayer(2000)

The above assume that the delivery order is maintained and that the messages are delivered in delay order. If you want to reorder the messages based on
delivery time, you can use the with this pattern. For exampleResequencer

from("activemq:someQueue").resequencer(header("MyDeliveryTime")).delay("MyRedeliveryTime").to("activemq:aDelayedQueue");

You can of course use many different languages such as , , or various . For example to delay the Expression XPath XQuery SQL Scripting Languages
message for the time period specified in the header, use the following syntax:

from("activemq:someQueue").delay(header("delayValue")).to("activemq:aDelayedQueue");

And to delay processing using the language you can use the following DSL:Simple

from("activemq:someQueue").delay(simple("${body.delayProperty}")).to("activemq:aDelayedQueue");

Spring DSL

The sample below demonstrates the delay in Spring DSL:

{snippet:id=example|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/delayer.xml}

For further examples of this pattern in use you could look at the junit test case

Asynchronous delaying

Available as of Camel 2.4

You can let the use non blocking asynchronous delaying, which means Camel will use a scheduler to schedule a task to be executed in the future. Delayer
The task will then continue routing. This allows the caller thread to not block and be able to service other messages etc.

From Java DSL

You use the to enable the async behavior.asyncDelayed()

from("activemq:queue:foo").delay(1000).asyncDelayed().to("activemq:aDelayedQueue");

From Spring XML

You use the attribute to enable the async behavior.asyncDelayed="true"

xml<route> <from uri="activemq:queue:foo"/> <delay asyncDelayed="true"> <constant>1000</constant> </delay> <to uri="activemq:aDealyedQueue"/> <
/route>

https://issues.apache.org/jira/browse/CAMEL-2654
https://cwiki.apache.org/confluence/display/CAMEL/Threading+Model
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://mockresult
https://cwiki.apache.org/confluence/display/CAMEL/Resequencer
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/SQL
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/Simple
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DelayerTest.java?view=markup

Creating a custom delay

You can use an expression to determine when to send a message using something like this

from("activemq:foo"). delay().method("someBean", "computeDelay"). to("activemq:bar");

then the bean would look like this...

public class SomeBean { public long computeDelay() { long delay = 0; // use java code to compute a delay value in millis return delay; } }

Using This Pattern

See Also

Delay Interceptor

https://cwiki.apache.org/confluence/display/CAMEL/Using+This+Pattern
https://cwiki.apache.org/confluence/display/CAMEL/Delay+Interceptor

	Delayer

