
1.
2.
3.

1.
2.

Apache Felix Application Demonstration
Apache Felix Application Demonstration
(This document is a work in progress.)

Apache Felix provides a foundation for creating modular and dynamically extensible applications. This page presents an example application to
demonstrate the various approaches to consider when creating a OSGi/Felix-based application. It is recommended that you have a look at the more basic

 such as before you start with this one.examples Apache Felix Framework Usage Documentation

In order to follow this example you need three things:

A client to check out the source code,Subversion
The IDE of your choice to view the source code, and
Maven to build the source code.

The source code of the examples is available in the Felix SVN repository at . If you feel more familiar http://svn.apache.org/repos/asf/felix/trunk/examples
with git, you can use the git mirror at: or browse the source code at github: git://git.apache.org/felix.git https://github.com/apache/felix

Potential Approaches

When creating an OSGi-based application there are two main orthogonal issues to consider:

Service model vs. extender model
Bundled application vs. hosted framework

The first issue is actually a general issue when creating OSGi-based applications. There are two general approaches that can be used when creating an
extensible OSGi application. The service model approach uses the OSGi service concept and the service registry as the extensibility mechanism. The
extender model approach uses the OSGi installed bundle set as the extensibility mechanism. Both approaches have their advantages and disadvantages
and they can be used independently or together.

The second issue is related to whether your application is run completely on top of the OSGi framework as a set of bundles or whether your application
hosts an embedded OSGi framework instance. Creating applications completely as a set of bundles is the preferred approach since it allows the
application to run on any OSGi framework, but this it not always possible. In such cases where it is not possible or desired, then you may host a framework
instance inside your application, which will likely tie your application to that framework implementation (although less so with the framework launching API
introduced in the OSGi R4.2 specification).

The remainder of this document will present variations of an example application that demonstrates these different approaches.

Example Application Overview

The example application is a very simple paint program that effectively functions identically whether using services/extensions or running embedded
/hosted. The application, called the host, defines a service/extension that it uses to draw shapes. Different implementations of the SimpleShape SimpleS

 can be created to allow the application to draw different shapes. Each shape service/extension has name and icon properties that the application hape
uses for manipulating the services/extensions. Available shapes are displayed in the application's tool bar. To draw a shape, click on its button in the tool
bar and then click in the drawing canvas. Shapes can be dragged, but not resized. When new shape services/extensions appear they are automatically
added to the tool bar and they are automatically removed when the shape services/extensions disappear. Closing the application window causes the
framework and the JVM to shut down. The following is a screen shot of the application.

https://cwiki.apache.org/confluence/display/FELIX/Getting+Started
https://cwiki.apache.org/confluence/display/FELIX/Getting+Started
https://cwiki.apache.org/confluence/display/FELIX/Apache+Felix+Framework+Usage+Documentation
http://subversion.apache.org/
http://maven.apache.org
http://svn.apache.org/repos/asf/felix/trunk/examples
git://git.apache.org/felix.git
https://github.com/apache/felix

Getting the source code

Currently, the example application is only available in our source control repositories. We have created two applications, one for the service-based and
one for the extender-based approach. Both examples can be run as a bundled application on top of any OSGi implementation or by hosting an embedded
framework. Assuming you are using svn to get the source code, you can find the source at the following locations:

http://svn.apache.org/repos/asf/felix/trunk/examples/servicebased.host
http://svn.apache.org/repos/asf/felix/trunk/examples/servicebased.circle
http://svn.apache.org/repos/asf/felix/trunk/examples/servicebased.square
http://svn.apache.org/repos/asf/felix/trunk/examples/servicebased.triangle

http://svn.apache.org/repos/asf/felix/trunk/examples/extenderbased.host
http://svn.apache.org/repos/asf/felix/trunk/examples/extenderbased.circle
http://svn.apache.org/repos/asf/felix/trunk/examples/extenderbased.square
http://svn.apache.org/repos/asf/felix/trunk/examples/extenderbased.triangle

Check out each project using an appropriate SVN command, such as:

svn co http://svn.apache.org/repos/asf/felix/trunk/examples/servicebased.host

Building and running the examples

Once you have checked out the projects you can go into each sub-directory and build it using Maven; this assumes you have Maven properly installed. To
build, simply perform the following in each project directory:

mvn clean install

After you have built the projects, start the Felix framework and install/start the resulting bundle in the directory of each sub-project for either the target/
service-based or extender-based example.

To start the examples using an embedded framework, copy the JAR files you just build to a folder in your file system. Then execute the host.jar, passing it
the names of all services/extensions as parameters; for example:

java -jar servicebased.host-1.0.0.jar file:/servicebased.circle-1.0.0.jar file:/servicebased.square-1.0.0.jar
file:/servicebased.triangle-1.0.0.jar

If you are using an IDE like Eclipse, you can run an embedded framework using a custom run configuration. In Eclipse click -> Run Run Configurations...
and create a new run configuration. Select the host project you want to start (servicebased.host or extenderbased.host) and chose the Java Application Ap

 class as from the org.apache.felix.example.servicebased/extenderbased.host.launch package. Switch to the tab and fill plication Main class Arguments
in the following (assuming you want to run the extender-based example):Program arguments

file:../extenderbased.circle/target/extenderbased.circle-1.0.0.jar file:../extenderbased.square/target
/extenderbased.square-1.0.0.jar file:../extenderbased.triangle/target/extenderbased.triangle-1.0.0.jar

For more details on running an application with an embedded framework scroll down to the bottom of the page.

Service-Based Application

The service-based application uses the OSGi service concept and the service registry as the extensibility mechanism. Therefore the host bundle contains
a service interface located at . The SimpleShape service has two org.apache.felix.example.servicebased.host.service.SimpleShape
properties: a name and an icon. Besides that it defines one operation: .draw(Graphics2D g2, Point p)

Defining shapes as services

Bundles that want to contribute a shape service have to implement the interface. Take a look at the circle bundle for example. The circle SimpleShape
bundle only contains one class, the . A is responsible for starting up a bundle. Therefore it gets passed in a Activator BundleActivator BundleConte

, that can be used to perform registration of services within the framework. The also contains an inner class that implements the xt Activator SimpleSh
 interface and therefore represents the implementation of a circle. The method is used to register ape SimpleShape start(BundleContext context

the circle implementation as a service:

Dictionary<String, Object> dict = new Hashtable<String, Object>();
dict.put(SimpleShape.NAME_PROPERTY, "Circle");
dict.put(SimpleShape.ICON_PROPERTY, new ImageIcon(this.getClass().getResource("circle.png")));
m_context.registerService(SimpleShape.class.getName(), new Circle(), dict);

First a is created to hold the service's properties. The two service properties are added to the dictionary. The icon of the circle service is Dictionary
located under src/main/resources/org/apache/example/servicebased/circle/circle.png. It gets loaded as an and added as icon property. The ImageIcon
service then gets registered in the service registry by passing the name of the service interface, a service object and the service's properties.

Detecting shape services

The host's creates a for displaying the different shapes. It then delegates adding and removing of services to Activator DrawingFrame SimpleShape
a implementation. The gets notified, when a new service is added to, modified or removed from the ServiceTracker ShapeTracker SimpleShape
service registry.

Extender-Based Application

In contrast to the service-based example, the extender-based example uses bundles as it's primary extensibility mechanism. The host bundle contains a Si
 interface that is much like the one from the service based example. It also contains a method and mpleShape draw(Graphics2D g2, Point p)

defines a set of properties. This time the properties are not used as properties for registering a service, but for defining bundle header properties in the
bundle's file.MANIFEST.MF

Defining shapes as extensions

Bundles that want to contribute a extension have to implement the interface. Have a look at the extender-based circle SimpleShape SimpleShape
implementation, for example. It only contains one class, , that implements . Note, that in contrast to the service-based example Circle SimpleShape
there is no need to define a . This is because, there is no need to register a service within the framework. Information about the BundleActivator
provided shape implementation is located in the bundle headers instead. Have a look at the circle's file:MANIFEST.MF

http://www.osgi.org/javadoc/r4v43/org/osgi/framework/BundleActivator.html
http://www.osgi.org/javadoc/r4v43/org/osgi/framework/BundleContext.html
http://www.osgi.org/javadoc/r4v43/org/osgi/framework/BundleContext.html
http://docs.oracle.com/javase/6/docs/api/java/util/Dictionary.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/ImageIcon.html
http://www.osgi.org/javadoc/r4v43/org/osgi/util/tracker/ServiceTracker.html
http://www.osgi.org/javadoc/r4v43/org/osgi/framework/BundleActivator.html

Manifest-Version: 1.0
Private-Package: org.apache.felix.example.extenderbased.circle
Tool: Bnd-0.0.238
Bundle-Name: Apache Felix Circle Extension
Created-By: Apache Maven Bundle Plugin
Bundle-Vendor: The Apache Software Foundation
Build-Jdk: 1.7.0_01
Bundle-Version: 1.0.0
Extension-Class: org.apache.felix.example.extenderbased.circle.Circle
Bnd-LastModified: 1331062969798
Extension-Icon: org/apache/felix/example/extenderbased/circle/circle.p
 ng
Bundle-ManifestVersion: 2
Bundle-Description: A simple extension for drawing circles.
Bundle-License: http://www.apache.org/licenses/LICENSE-2.0.txt
Bundle-DocURL: http://www.apache.org/
Bundle-SymbolicName: org.apache.felix.example.extenderbased.circle
Import-Package: org.apache.felix.example.extenderbased.host.extension
Extension-Name: Circle

As you can see, the three bundle properties, defined in the interface are set as bundle headers.SimpleShape

Note: The manifest file is generated by the Maven build, so you will only find it in the compiled jar. If you are interested in automatically creating manifest
files for your bundles, have a look at the configuration of the in the pom.xml.org.apache.felix.maven-bundle-plugin

Detecting shape bundles

Like the for tracking services, there is a for tracking bundles. A get's notified, when the state of ServiceTracker BundleTracker BundleTracker
tracked bundles change. Have a look at . The constructor defines that org.apache.felix.example.extenderbased.host.ShapeBundleTracker
only active bundles should be tracked. The method gets called by the framework, when a addingBundle(Bundle bundle, BundleEvent event)
bundle enters the activated state. The tracker then checks if the bundle's headers contain the extension name property and, if so, adds the icon to the
application.

Embedding the Framework

The OSGi R4.2 specification defines APIs to allow an application to host it's own embedded framework instance. Therefore an implementation of the Fram
 interface has to be used. OSGi implementers specify their implementation in the eworkFactory FrameworkFactory META-INF/services/org.

 file. Prior to Java 6, one had to parse the class name in that file by oneself. Luckily Java 6 has the osgi.framework.launch.FrameworkFactory Ser
 class, that lets you easily instantiate a . Have a look at the contents of the viceLoader<S> FrameworkFactoy org.apache.felix.example.

 package in the extender-based host bundle (the implementation is the same for the service-based example).extenderbased.host.launch

The class is responsible for creating the framework and installing and starting the bundles. It uses a for creating the Application ConfigUtil
framework configuration that is needed to create a framework using the . The also creates a temporary cache directory FrameworkFactory ConfigUtil
for the framework. If the creation of the framework is successful, will be called to start installAndStartBundles(String... bundleLocations)
the actual application. Therefore the of the host bundle is instantiated. Note, that the host bundle can not register itself within the framework it Activator
just created. Only the extension bundles will be registered within the framework.

As you can see no Felix-specific code is involved in any of the examples. That's one of the advantages of OSGi specification. Bundles that run on Felix will
run on every other implementation of the same OSGi release.

Feedback

Subscribe to the Felix users mailing list by sending a message to ; after subscribing, email questions or feedback to users-subscribe@felix.apache.org user
.s@felix.apache.org

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://www.osgi.org/javadoc/r4v43/org/osgi/util/tracker/ServiceTracker.html
http://www.osgi.org/javadoc/r4v42/org/osgi/util/tracker/BundleTracker.html
http://www.osgi.org/javadoc/r4v42/org/osgi/framework/launch/FrameworkFactory.html
http://www.osgi.org/javadoc/r4v42/org/osgi/framework/launch/FrameworkFactory.html
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
mailto:users-subscribe@felix.apache.org
mailto:users@felix.apache.org
mailto:users@felix.apache.org

	Apache Felix Application Demonstration

