
JAXB

JAXB

JAXB is a which uses the JAXB2 XML marshalling standard which is included in Java 6 to unmarshal an XML payload into Java objects or to Data Format
marshal Java objects into an XML payload.

Using the Java DSL

For example the following uses a named DataFormat of which is configured with a number of Java package names to initialize the .jaxb JAXBContext

DataFormat jaxb = new JaxbDataFormat("com.acme.model"); from("activemq:My.Queue"). unmarshal(jaxb). to("mqseries:Another.Queue");

You can if you prefer use a named reference to a data format which can then be defined in your such as via your XML file. e.g.Registry Spring

from("activemq:My.Queue"). unmarshal("myJaxbDataType"). to("mqseries:Another.Queue");

Using Spring XML

The following example shows how to use JAXB to unmarshal using configuring the jaxb data typeSpring {snippet:id=example|lang=xml|url=camel/trunk
This example shows how to configure the data type just /components/camel-jaxb/src/test/resources/org/apache/camel/example/springDataFormat.xml}

once and reuse it on multiple routes.{snippet:id=example|lang=xml|url=camel/trunk/components/camel-jaxb/src/test/resources/org/apache/camel/example
/marshalAndUnmarshalWithRef.xml}

Multiple context paths
It is possible to use this data format with more than one context path. You can specify context path using as separator, for example : com.mycompany:

. Note that this is handled by JAXB implementation and might change if you use different vendor than RI.com.mycompany2

Partial marshalling/unmarshalling

This feature is new to Camel 2.2.0.
JAXB 2 supports marshalling and unmarshalling XML tree fragments. By default JAXB looks for annotation on given class to operate @XmlRootElement
on whole XML tree. This is useful but not always - sometimes generated code does not have @XmlRootElement annotation, sometimes you need
unmarshall only part of tree.
In that case you can use partial unmarshalling. To enable this behaviours you need set property . Camel will pass this class to JAXB's partClass
unmarshaler.{snippet:id=example|lang=xml|url=camel/trunk/components/camel-jaxb/src/test/resources/org/apache/camel/example

For marshalling you have to add attribute with QName of destination namespace. Example of Spring DSL /springDataFormatPartial.xml} partNamespace
you can find above.

Fragment

This feature is new to Camel 2.8.0.
JaxbDataFormat has new property fragment which can set the the encoding property on the JAXB Marshaller. If you don't Marshaller.JAXB_FRAGMENT
want the JAXB Marshaller to generate the XML declaration, you can set this option to be true. The default value of this property is false.

Ignoring the NonXML Character

This feature is new to Camel 2.2.0.
JaxbDataFromat supports to ignore the , you just need to set the filterNonXmlChars property to be true, JaxbDataFormat will replace NonXML Character
the NonXML character with " " when it is marshaling or unmarshaling the message. You can also do it by setting the property Exchange Exchange.

.FILTER_NON_XML_CHARS

 JDK 1.5 JDK 1.6+

Filtering in use StAX API and implementation No

Filtering not in use StAX API only No

This feature has been tested with Woodstox 3.2.9 and Sun JDK 1.6 StAX implementation.

New for Camel 2.12.1
JaxbDataFormat now allows you to customize the XMLStreamWriter used to marshal the stream to XML. Using this configuration, you can add your own
stream writer to completely remove, escape, or replace non-xml characters.

java JaxbDataFormat customWriterFormat = new JaxbDataFormat("org.apache.camel.foo.bar"); customWriterFormat.setXmlStreamWriterWrapper(new
TestXmlStreamWriter());

The following example shows using the Spring DSL and also enabling Camel's NonXML filtering:

xml<bean id="testXmlStreamWriterWrapper" class="org.apache.camel.jaxb.TestXmlStreamWriter"/> <jaxb filterNonXmlChars="true" contextPath="org.
apache.camel.foo.bar" xmlStreamWriterWrapper="#testXmlStreamWriterWrapper" />

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/Spring
http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Char
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

Working with the ObjectFactory

If you use XJC to create the java class from the schema, you will get an ObjectFactory for you JAXB context. Since the ObjectFactory uses JAXBElement
to hold the reference of the schema and element instance value, jaxbDataformat will ignore the JAXBElement by default and you will get the element
instance value instead of the JAXBElement object form the unmarshaled message body.
If you want to get the JAXBElement object form the unmarshaled message body, you need to set the JaxbDataFormat object's ignoreJAXBElement
property to be false.

Setting encoding

You can set the option to use when marshalling. Its the encoding property on the JAXB Marshaller.encoding Marshaller.JAXB_ENCODING
You can setup which encoding to use when you declare the JAXB data format. You can also provide the encoding in the property Exchange Exchange.

. This property will overrule the encoding set on the JAXB data format.CHARSET_NAME

In this Spring DSL we have defined to use as the encoding:iso-8859-1 {snippet:id=example|lang=xml|url=camel/trunk/components/camel-jaxb/src/test
/resources/org/apache/camel/example/springDataFormatWithEncoding.xml}

Controlling namespace prefix mapping

Available as of Camel 2.11

When marshalling using or then the JAXB implementation will automatic assign namespace prefixes, such as ns2, ns3, ns4 etc. To control JAXB SOAP
this mapping, Camel allows you to refer to a map which contains the desired mapping.

Notice this requires having JAXB-RI 2.1 or better (from SUN) on the classpath, as the mapping functionality is dependent on the implementation of JAXB,
whether its supported.

For example in Spring XML we can define a Map with the mapping. In the mapping file below, we map SOAP to use soap as prefix. While our custom
namespace "http://www.mycompany.com/foo/2" is not using any prefix.

xml <util:map id="myMap"> <entry key="http://www.w3.org/2003/05/soap-envelope" value="soap"/> <!-- we dont want any prefix for our namespace -->
<entry key="http://www.mycompany.com/foo/2" value=""/> </util:map>

To use this in or you refer to this map, using the attribute as shown below. Then Camel will lookup in the a JAXB SOAP namespacePrefixRef Registry j
 with the id "myMap", which was what we defined above.ava.util.Map

xml <marshal> <soapjaxb version="1.2" contextPath="com.mycompany.foo" namespacePrefixRef="myMap"/> </marshal>

Schema validation

Available as of Camel 2.11

The JAXB supports validation by marshalling and unmarshalling from/to XML. Your can use the prefix , to specify Data Format classpath: file:* or *http:
how the resource should by resolved. You can separate multiple schema files by using the character.','

Known issue
Camel 2.11.0 and 2.11.1 has a known issue by validation multiple 's in parallel. See . This is fixed with Camel 2.11.2/2.12.0.Exchange CAMEL-6630

Using the Java DSL, you can configure it in the following way:

javaJaxbDataFormat jaxbDataFormat = new JaxbDataFormat(); jaxbDataFormat.setContextPath(Person.class.getPackage().getName()); jaxbDataFormat.
setSchema("classpath:person.xsd,classpath:address.xsd");

You can do the same using the XML DSL:

xml<marshal> <jaxb id="jaxb" schema="classpath:person.xsd,classpath:address.xsd"/> </marshal>

Camel will create and pool the underling instances on the fly, because the shipped with the JDK is not thread safe.SchemaFactory SchemaFactory
However, if you have a implementation which is thread safe, you can configure the JAXB data format to use this one:SchemaFactory

javaJaxbDataFormat jaxbDataFormat = new JaxbDataFormat(); jaxbDataFormat.setSchemaFactory(thradSafeSchemaFactory);

Schema Location

Available as of Camel 2.14

The JAXB supports to specify the SchemaLocation when marshaling the XML. Data Format

Using the Java DSL, you can configure it in the following way:

javaJaxbDataFormat jaxbDataFormat = new JaxbDataFormat(); jaxbDataFormat.setContextPath(Person.class.getPackage().getName()); jaxbDataFormat.
setSchemaLocation("schema/person.xsd");

You can do the same using the XML DSL:

xml<marshal> <jaxb id="jaxb" schemaLocation="schema/person.xsd"/> </marshal>

http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/SOAP
https://cwiki.apache.org/confluence/display/CAMEL/SOAP
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://issues.apache.org/jira/browse/CAMEL-6630
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

Marshal data that is already XML

Available as of Camel 2.14.1

The JAXB marshaller requires that the message body is JAXB compatible, eg its a JAXBElement, eg a java instance that has JAXB annotations, or extend
JAXBElement. There can be situations where the message body is already in XML, eg from a String type. There is a new option mustBeJAXBElement
you can set to false, to relax this check, so the JAXB marshaller only attempts to marshal JAXBElements (javax.xml.bind.JAXBIntrospector#isElement
returns true). And in those situations the marshaller fallbacks to marshal the message body as-is.

XmlRootElement objects

Available as of Camel 2.17.2

The JAXB option objectFactory has a default value equals to false. This is related to a performance degrading. For more information look at Data Format
the issue CAMEL-10043

For the marshalling of you'll need to non-XmlRootElement JaxB objects call JaxbDataFormat#setObjectFactory(true)

Dependencies

To use JAXB in your camel routes you need to add the a dependency on which implements this data format.camel-jaxb

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download
).page for the latest versions

<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-jaxb</artifactId> <version>x.x.x</version> </dependency>

https://cwiki.apache.org/confluence/display/CAMEL/Data+Format
https://issues.apache.org/jira/browse/CAMEL-10043
https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Download

	JAXB

