
Asynchronous Processing

Asynchronous Processing

Overview

Camel supports a more complex asynchronous processing model. The asynchronous processors implement the org.apache.camel.AsyncProcessor
interface which is derived from the more synchronous interface. There are advantages and disadvantages when using org.apache.camel.Processor
asynchronous processing when compared to using the standard synchronous processing model.

Advantages:

Processing routes that are composed fully of asynchronous processors do not use up threads waiting for processors to complete on blocking
calls. This can increase the scalability of your system by reducing the number of threads needed to process the same workload.
Processing routes can be broken up into processing stages where different thread pools can process the different stages. This means that SEDA
your routes can be processed concurrently.

Disadvantages:

Implementing asynchronous processors is more complex than implementing the synchronous versions.

When to Use

We recommend that processors and components be implemented the more simple synchronous APIs unless you identify a performance of scalability
requirement that dictates otherwise. A Processor whose method blocks for a long time would be good candidates for being converted into an process()
asynchronous processor.

Interface Details

public interface AsyncProcessor extends Processor {
 boolean process(Exchange exchange, AsyncCallback callback);
}

The defines a single method which is very similar to it's synchronous brethren.AsyncProcessor process() Processor.process()

Here are the differences:

A non-null be supplied which will be notified when the exchange processing is completed.AsyncCallback MUST
It not throw any exceptions that occurred while processing the exchange. Any such exceptions must be stored on the exchange's MUST Excepti

 property.on
It know if it will complete the processing synchronously or asynchronously. The method will return if it does complete synchronously, MUST true
otherwise it returns .false
When the processor has completed processing the exchange, it must call the method.callback.done(boolean sync)
The sync parameter match the value returned by the method.MUST process()

Implementing Processors that Use the AsyncProcessor API

All processors, even synchronous processors that do not implement the interface, can be coerced to implement the AsyncProcessor AsyncProcessor
interface. This is usually done when you are implementing a Camel component consumer that supports asynchronous completion of the exchanges that it
is pushing through the Camel routes. Consumers are provided a object when created. All Processor object can be coerced to a Processor AsyncProces

 using the following API:sor

Processor processor = ...
AsyncProcessor asyncProcessor = AsyncProcessorTypeConverter.convert(processor);

For a route to be fully asynchronous and reap the benefits to lower Thread usage, it must start with the consumer implementation making use of the
asynchronous processing API. If it called the synchronous method instead, the consumer's thread would be forced to be blocked and in use process()
for the duration that it takes to process the exchange.

Supported versions

The information on this page applies for or later.Camel 2.4

Before the asynchronous processing is only implemented for where as in we have implemented it in many other Camel 2.4 JBI Camel 2.4
areas. See more at .Asynchronous Routing Engine

https://cwiki.apache.org/confluence/display/CAMEL/SEDA
https://cwiki.apache.org/confluence/display/CAMEL/JBI
https://cwiki.apache.org/confluence/display/CAMEL/Asynchronous+Routing+Engine

It is important to take note that just because you call the asynchronous API, it does not mean that the processing will take place asynchronously. It only
allows the possibility that it can be done without tying up the caller's thread. If the processing happens asynchronously is dependent on the configuration of
the Camel route.

Normally, the the process call is passed in an inline inner class instance which can reference the exchange object that was declared AsyncCallback
final. This allows it to finish up any post processing that is needed when the called processor is done processing the exchange.

Example.

final Exchange exchange = ...
AsyncProcessor asyncProcessor = ...
asyncProcessor.process(exchange, new AsyncCallback() {
 public void done(boolean sync) {

 if (exchange.isFailed()) {
 ... // do failure processing.. perhaps rollback etc.
 } else {
 ... // processing completed successfully, finish up
 // perhaps commit etc.
 }
 }
});

Asynchronous Route Sequence Scenarios

Now that we have understood the interface contract of the , and have seen how to make use of it when calling processors, let's looks a AsyncProcessor
what the thread model/sequence scenarios will look like for some sample routes.

The Jetty component's consumers support asynchronous processing through the use of continuations. Suffice to say it can take a HTTP request and pass
it to a Camel route for asynchronous processing. If the processing is indeed asynchronous, it uses a Jetty continuation so that the HTTP request is 'parked'
and the thread is released. Once the Camel route finishes processing the request, the Jetty component uses the to tell Jetty to 'un-park' AsyncCallback
the request. Jetty un-parks the request, the HTTP response returned using the result of the exchange processing.

Notice that the jetty continuations feature is only used "If the processing is indeed async". This is why implementations AsyncProcessor.process() mu
 accurately report if request is completed synchronously or not.st

The component's producer allows you to make HTTP requests and implement the interface. A route that uses both the jetty jhc AsyncProcessor
asynchronous consumer and the asynchronous producer will be a fully asynchronous route and has some nice attributes that can be seen if we take a jhc
look at a sequence diagram of the processing route.

For the route:

from("jetty:http://localhost:8080/service")
 .to("jhc:http://localhost/service-impl");

The sequence diagram would look something like this:

The diagram simplifies things by making it looks like processors implement the interface when in reality the interfaces AsyncCallback AsyncCallback
are inline inner classes, but it illustrates the processing flow and shows how two separate threads are used to complete the processing of the original
HTTP request. The first thread is synchronous up until processing hits the producer which issues the HTTP request. It then reports that the exchange jhc
processing will complete asynchronously using NIO to get the response back. Once the component has received a full response it uses jhc AsyncCallba

 method to notify the caller. These callback notifications continue up until it reaches the original Jetty consumer which then un-parks the HTTP ck.done()
request and completes it by providing the response.

Mixing Synchronous and Asynchronous Processors

It is totally possible and reasonable to mix the use of synchronous and asynchronous processors/components. The pipeline processor is the backbone of a
Camel processing route. It glues all the processing steps together. It is implemented as an and supports interleaving synchronous and AsyncProcessor
asynchronous processors as the processing steps in the pipeline.

Let's say we have two custom asynchronous processors, namely: and . Let's say we want to load file from the data/in MyValidator MyTransformation
directory validate them with the processor, transform them into JPA Java objects using and then insert them into MyValidator() MyTransformation
the database using the component. Let's say that the transformation process takes quite a bit of time and we want to allocate threads to do parallel JPA 20
transformations of the input files. The solution is to make use of the thread processor. The thread is that forces subsequent processing AsyncProcessor
in asynchronous thread from a thread pool.

The route might look like:

from("file:data/in")
 .process(new MyValidator())
 .threads(20)
 .process(new MyTransformation())
 .to("jpa:PurchaseOrder");

The sequence diagram would look something like this:

https://cwiki.apache.org/confluence/display/CAMEL/JPA

You would actually have multiple threads executing the second part of the thread sequence.

Staying Synchronous in an AsyncProcessor

Generally speaking you get better throughput processing when you process things synchronously. This is due to the fact that starting up an asynchronous
thread and doing a context switch to it adds a little bit of of overhead. So it is generally encouraged that 's do as much work as they can AsyncProcessor
synchronously. When they get to a step that would block for a long time, at that point they should return from the process call and let the caller know that it
will be completing the call asynchronously.

	Asynchronous Processing

