
Interceptors
Interceptors and Phases
Interceptors are the fundamental processing unit inside CXF. When a service is invoked, an InterceptorChain is created and invoked. Each interceptor gets
a chance to do what they want with the message. This can include reading it, transforming it, processing headers, validating the message, etc.

Interceptors are used with both CXF clients and CXF servers. When a CXF client invokes a CXF server, there is an outgoing interceptor chain for the client
and an incoming chain for the server. When the server sends the response back to the client, there is an outgoing chain for the server and an incoming
one for the client. Additionally, in the case of , a CXF web service will create a separate outbound error handling chain and the client will SOAPFaults
create an inbound error handling chain.

Some examples of interceptors inside CXF include:

SoapActionInterceptor - Processes the SOAPAction header and selects an operation if it's set.
StaxInInterceptor - Creates a Stax XMLStreamReader from the transport input stream.
Attachment(In/Out)Interceptor - Turns a multipart/related message into a series of attachments.

InterceptorChains are divided up into Phases. The phase that each interceptor runs in is declared in the interceptor's constructor. Each phase may contain
many interceptors. On the incoming chains, you'll have the following phases:

Phase Functions

RECEIVE Transport level processing

(PRE/USER/POST)_STREAM Stream level processing/transformations

READ This is where header reading typically occurs.

(PRE/USER/POST)_PROTOCOL Protocol processing, such as JAX-WS SOAP handlers

UNMARSHAL Unmarshalling of the request

(PRE/USER/POST)_LOGICAL Processing of the umarshalled request

PRE_INVOKE Pre invocation actions

INVOKE Invocation of the service

POST_INVOKE Invocation of the outgoing chain if there is one

On the outgoing chain there are the following phases:

Phase Functions

SETUP Any set up for the following phases

(PRE/USER/POST)_LOGICAL Processing of objects about to marshalled

PREPARE_SEND Opening of the connection

PRE_STREAM

PRE_PROTOCOL Misc protocol actions.

WRITE Writing of the protocol message, such as the SOAP Envelope.

MARSHAL Marshalling of the objects

(USER/POST)_PROTOCOL Processing of the protocol message.

(USER/POST)_STREAM Processing of the byte level message

SEND

After the SEND phase, there are a bunch of "*_ENDING" phases that are symmetrical to the above phases to allow the interceptors to cleanup and close
anything that they had opened or started in the above phases:

Phase Functions

SEND_ENDING

POST_STREAM_ENDING

USER_STREAM_ENDING

https://docs.oracle.com/javase/7/docs/api/javax/xml/soap/SOAPFault.html

POST_PROTOCOL_ENDING

USER_PROTOCOL_ENDING

MARSHAL_ENDING

WRITE_ENDING

PRE_PROTOCOL_ENDING

PRE_STREAM_ENDING

PREPARE_SEND_ENDING

POST_LOGICAL_ENDING

USER_LOGICAL_ENDING

PRE_LOGICAL_ENDING

SETUP_ENDING Usually results in all the streams being closed and the final data being sent on the wire.

InterceptorProviders
Several different components inside CXF may provide interceptors to an InterceptorChain. These implement the InterceptorProvider interface:

public interface InterceptorProvider {

 List<Interceptor> getInInterceptors();

 List<Interceptor> getOutInterceptors();

 List<Interceptor> getOutFaultInterceptors();

 List<Interceptor> getInFaultInterceptors();
}

To add an interceptor to an interceptor chain, you'll want to add it to one of the Interceptor Providers.

MyInterceptor interceptor = new MyInterceptor();
provider.getInInterceptors().add(interceptor);

Some InterceptorProviders inside CXF are:

Client
Endpoint
Service
Bus
Binding

Writing and configuring an Interceptor
The CXF distribution is shipped with a demo called which shows how to develop a user interceptor and configure the interceptor configuration_interceptor
into its interceptor chain.

Writing an Interceptor

Writing an interceptor is relatively simple. Your interceptor needs to extend from either the AbstractPhaseInterceptor or one of its such as many subclasses
AbstractSoapInterceptor. Extending from AbstractPhaseInterceptor allows your interceptor to access the methods of the interface. For example, Message
AttachmentInInterceptor is used in CXF to turn a multipart/related message into a series of attachments. It looks like below:

https://github.com/apache/cxf/tree/master/distribution/src/main/release/samples/configuration_interceptor
http://tinyurl.com/3bkho8
http://tinyurl.com/24gj28

import java.io.IOException;

import org.apache.cxf.attachment.AttachmentDeserializer;
import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

public class AttachmentInInterceptor extends AbstractPhaseInterceptor<Message> {
 public AttachmentInInterceptor() {
 super(Phase.RECEIVE);
 }

 public void handleMessage(Message message) {
 String contentType = (String) message.get(Message.CONTENT_TYPE);
 if (contentType != null && contentType.toLowerCase().indexOf("multipart/related") != -1) {
 AttachmentDeserializer ad = new AttachmentDeserializer(message);
 try {
 ad.initializeAttachments();
 } catch (IOException e) {
 throw new Fault(e);
 }
 }
 }

 public void handleFault(Message messageParam) {
 }
}

Extending from sub-classes of AbstractPhaseInterceptor allows your interceptor to access more specific information than those in the Message interface.
One of the sub-classes of AbstractPhaseInterceptor is . Extending from this class allows your interceptor to access the SOAP AbstractSoapInterceptor
header and version information of the . For example, SoapActionInInterceptor is used in CXF to parse the SOAP action, as a simplified SoapMessage class
version of it shows below:

import java.util.Collection;
import java.util.List;
import java.util.Map;

import org.apache.cxf.binding.soap.Soap11;
import org.apache.cxf.binding.soap.Soap12;
import org.apache.cxf.binding.soap.SoapMessage;
import org.apache.cxf.binding.soap.model.SoapOperationInfo;
import org.apache.cxf.endpoint.Endpoint;
import org.apache.cxf.helpers.CastUtils;
import org.apache.cxf.interceptor.Fault;
import org.apache.cxf.message.Exchange;
import org.apache.cxf.message.Message;
import org.apache.cxf.phase.Phase;
import org.apache.cxf.service.model.BindingOperationInfo;
import org.apache.cxf.service.model.OperationInfo;

public class SoapActionInInterceptor extends AbstractSoapInterceptor {

 public SoapActionInInterceptor() {
 super(Phase.READ);
 addAfter(ReadHeadersInterceptor.class.getName());
 addAfter(EndpointSelectionInterceptor.class.getName());
 }

 public void handleMessage(SoapMessage message) throws Fault {
 if (message.getVersion() instanceof Soap11) {
 Map<String, List<String>> headers = CastUtils.cast((Map)message.get(Message.PROTOCOL_HEADERS));
 if (headers != null) {
 List<String> sa = headers.get("SOAPAction");
 if (sa != null && sa.size() > 0) {
 String action = sa.get(0);
 if (action.startsWith("\"")) {
 action = action.substring(1, action.length() - 1);
 }
 getAndSetOperation(message, action);

http://tinyurl.com/2xqyg6
http://tinyurl.com/2gxj2c

 }
 }
 } else if (message.getVersion() instanceof Soap12) {

 }
 }

 private void getAndSetOperation(SoapMessage message, String action) {
 if ("".equals(action)) {
 return;
 }

 Exchange ex = message.getExchange();
 Endpoint ep = ex.get(Endpoint.class);

 BindingOperationInfo bindingOp = null;

 Collection<BindingOperationInfo> bops = ep.getBinding().getBindingInfo().getOperations();
 for (BindingOperationInfo boi : bops) {
 SoapOperationInfo soi = (SoapOperationInfo) boi.getExtensor(SoapOperationInfo.class);
 if (soi != null && soi.getAction().equals(action)) {
 if (bindingOp != null) {
 //more than one op with the same action, will need to parse normally
 return;
 }
 bindingOp = boi;
 }
 }
 if (bindingOp != null) {
 ex.put(BindingOperationInfo.class, bindingOp);
 ex.put(OperationInfo.class, bindingOp.getOperationInfo());
 }
 }

}

Note that you will need to specify the phase that the interceptor will be included in. This is done in the interceptor's constructor:

public class MyInterceptor extends AbstractSoapInterceptor {
 public MyInterceptor() {
 super(Phase.USER_PROTOCOL);
 }
 ...
}

You can also express that you would like the interceptor to run before/after certain other interceptors defined in the same phase:

public class MyInterceptor extends AbstractSoapInterceptor {
 public MyInterceptor() {
 super(Phase.USER_PROTOCOL);

 // MyInterceptor needs to run after SomeOtherInterceptor
 getAfter().add(SomeOtherInterceptor.class.getName());

 // MyInterceptor needs to run before YetAnotherInterceptor
 getBefore().add(YetAnotherInterceptor.class.getName());
 }
 ...
}

You can add your interceptors into the interceptor chain either programmatically or through configuration.

Adding interceptors programmatically

To add this to your server, you'll want to get access to the Server object (see for more info):here

https://cwiki.apache.org/confluence/display/CXF20DOC/Server%2C+Service%2C+and+Client+FactoryBeans

import org.apache.cxf.endpoint.Server;
import org.apache.cxf.frontend.ServerFactoryBean;
...

MyInterceptor myInterceptor = new MyInterceptor();

Server server = serverFactoryBean.create();
server.getEndpoint().getInInterceptor().add(myInterceptor);

On the Client side the process is very similar:

import org.apache.cxf.endpoint.Client;
import org.apache.cxf.frontend.ClientProxy;
...

MyInterceptor myInterceptor = new MyInterceptor();
FooService client = ... ; // created from ClientProxyFactoryBean or generated JAX-WS client

//You could also call clientProxyFactroyBean.getInInterceptor().add(myInterceptor) to add the interceptor

Client cxfClient = ClientProxy.getClient(client);
cxfClient.getInInterceptors().add(myInterceptor);

// then you can call the service
client.doSomething();

You can also use annotation to add the interceptors from the SEI or service class. When CXF create the server or client, CXF will add the interceptor
according with the annotation.

@org.apache.cxf.interceptor.InInterceptors (interceptors = {"com.example.Test1Interceptor" })
@org.apache.cxf.interceptor.InFaultInterceptors (interceptors = {"com.example.Test2Interceptor" })
@org.apache.cxf.interceptor.OutInterceptors (interceptors = {"com.example.Test1Interceptor" })
@org.apache.cxf.interceptor.InFaultInterceptors (interceptors = {"com.example.Test2Interceptor","com.example.
Test3Intercetpor" })
@WebService(endpointInterface = "org.apache.cxf.javascript.fortest.SimpleDocLitBare",
 targetNamespace = "uri:org.apache.cxf.javascript.fortest")
public class SayHiImplementation implements SayHi {
 public long sayHi(long arg) {
 return arg;
 }
 ...
}

Adding interceptors through configuration

The page provides examples on using configuration files to add interceptors.configuration file

Adding MyInterceptor to the bus:

https://cwiki.apache.org/confluence/display/CXF20DOC/Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://cxf.apache.org/core"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd">

 <bean id="MyInterceptor" class="demo.interceptor.MyInterceptor"/>

 <!-- We are adding the interceptors to the bus as we will have only one endpoint/service/bus. -->

 <cxf:bus>
 <cxf:inInterceptors>
 <ref bean="MyInterceptor"/>
 </cxf:inInterceptors>
 <cxf:outInterceptors>
 <ref bean="MyInterceptor"/>
 </cxf:outInterceptors>
 </cxf:bus>
</beans>

For embedded Jetty-based web services, the configuration file can be declared by starting the service with the -Dcxf.config.file=server.xml option. See the s
 section on the configuration file page for information on specifying the file for servlet WAR file-based web service implementations.erver configuration

Adding MyInterceptor to your client:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration http://cxf.apache.org/schemas
/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd"
>

 <http:conduit name="{http://apache.org/hello_world_soap_http}SoapPort9001.http-conduit">
 <http:client DecoupledEndpoint="http://localhost:9990/decoupled_endpoint"/>
 </http:conduit>

 <bean id="MyInterceptor" class="demo.interceptor.MyInterceptor"/>

 <!-- We are adding the interceptors to the bus as we will have only one endpoint/service/bus. -->

 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">
 <property name="inInterceptors">
 <ref bean="MyInterceptor"/>
 </property>
 <property name="outInterceptors">
 <ref bean="MyInterceptor"/>
 </property>
 </bean>
</beans>

To specify the client-side configuration file, start your client using the -Dcxf.config.file=client.xml option.

CXF contributed interceptors

In CXF, all the functionality of processing messages is done via interceptors. Thus, when debugging a message flow, you will come across a bunch of
interceptors in the chain. Here is a list of some of the common interceptors and the functionality they provide. The source code for these interceptors is
available on .github

Default JAX-WS Incoming interceptor chain (Server):

AttachmentInInterceptor Parse the mime headers for mime boundaries, finds the "root" part and resets the input stream to it, and stores the
other parts in a collection of Attachments
StaxInInterceptor Creates an XMLStreamReader from the transport InputStream on the Message
ReadHeadersInterceptor Parses the SOAP headers and stores them on the Message

http://tinyurl.com/2c9fuf
http://tinyurl.com/2c9fuf
https://github.com/apache/cxf/

SoapActionInInterceptor Parses "soapaction" header and looks up the operation if a unique operation can be found for that action.
MustUnderstandInterceptor Checks the MustUnderstand headers, its applicability and process it, if required
SOAPHandlerInterceptor SOAP Handler as per JAX-WS
LogicalHandlerInInterceptor Logical Handler as per JAX-WS
CheckFaultInterceptor Checks for fault, if present aborts interceptor chain and invokes fault handler chain
URIMappingInterceptor (for CXF versions <= 2.x) Can handle HTTP GET, extracts operation info and sets the same in the Message
DocLiteralnInterceptor Examines the first element in the SOAP body to determine the appropriate Operation (if soapAction did not find one) and
calls the Databinding to read in the data.
SoapHeaderInterceptor Perform databinding of the SOAP headers for headers that are mapped to parameters
WrapperClassInInterceptor For wrapped doc/lit, the DocLiteralInInterceptor probably read in a single JAXB bean. This interceptor pulls the
individual parts out of that bean to construct the Object[] needed to invoke the service.
SwAInInterceptor For Soap w/ Attachments, finds the appropriate attachments and assigns them to the correct spot in the parameter list.
HolderInInterceptor For OUT and IN/OUT parameters, JAX-WS needs to create Holder objects. This interceptor creates the Holders and puts
them in the parameter list.
ServiceInvokerInInterceptor Actually invokes the service.

Default Outgoing chain stack (Server):

HolderOutInterceptor For OUT and IN/OUT params, pulls the values out of the JAX-WS Holder objects (created in HolderInInterceptor) and
adds them to the param list for the out message.
SwAOutInterceptor For OUT parts that are Soap attachments, pulls them from the list and holds them for later.
WrapperClassOutInterceptor For doc/lit wrapped, takes the remaining parts and creates a wrapper JAXB bean to represent the whole message.
SoapHeaderOutFilterInterceptor Removes inbound marked headers
SoapActionOutInterceptor Sets the SOAP Action
MessageSenderInterceptor Calls back to the Destination object to have it setup the output streams, headers, etc... to prepare the outgoing
transport.
SoapPreProtocolOutInterceptor This interceptor is responsible for setting up the SOAP version and header, so that this is available to any pre-
protocol interceptors that require these to be available.
AttachmentOutInterceptor If this service uses attachments (either SwA or if MTOM is enabled), it sets up the Attachment marshallers and the
mime stuff that is needed.
StaxOutInterceptor Creates an XMLStreamWriter from the OutputStream on the Message.
SoapHandlerInterceptor JAX-WS SOAPHandler
SoapOutInterceptor Writes start element for soap:envelope and complete elements for other header blocks in the message. Adds start element
for soap:body too.
LogicalHandlerOutInterceptor JAX-WS Logical handler stuff
WrapperOutInterceptor If wrapped doc/lit and not using a wrapper bean or if RPC lit, outputs the wrapper element to the stream.
BareOutInterceptor Uses the databinding to write the params out.
SoapOutInterceptor$SoapOutEndingInterceptor Closes the soap:body and soap:envelope
StaxOutInterceptor$StaxOutEndingInterceptor Flushes the stax stream.
MessageSenderInt$MessageSenderEnding Closes the exchange, lets the transport know everything is done and should be flushed to the client.

	Interceptors

