
Spring Testing

Spring Testing

Testing is a crucial part of any development or integration work. The Spring Framework offers a number of features that makes it easy to test while using 
Spring for Inversion of Control which works with JUnit 3.x, JUnit 4.x, and .TestNG

We can use Spring for IoC and the Camel  and  endpoints to create sophisticated integration/unit tests that are easy to run and debug inside your Mock Test
IDE.  There are three supported approaches for testing with Spring in Camel.

Name Testing 
Frameworks 
Supported

Description Required 
Camel Test 
Dependencies

CamelS
pringT
estSup
port

JUnit 3.x 
(deprecate
d)
JUnit 4.x
TestNG - 
Camel 2.8

Provided by:

org.apache.camel.test.CamelSpringTestSupport
org.apache.camel.test.junit4.CamelSpringTestSupport
org.apache.camel.testng.CamelSpringTestSupport

These base classes provide  with the simple   classes from   but do not feature parity CamelTestSupport Camel Test
support Spring annotations on the test class such as ,  , and @Autowired @DirtiesContext @ContextConfigurat

.ion

JUnit 3.x 
(deprecated
) - camel-
test-
spring
JUnit 4.x - c
amel-
test-
spring
TestNG - ca
mel-test-
ng

Plain 
Spring 
Test

JUnit 3.x
JUnit 4.x
TestNG

Either extend the abstract base classes:

org.springframework.test.context.junit38.AbstractJUnit38SpringContextTests
org.springframework.test.context.junit38.AbstractJUnit4SpringContextTests
etc.

provided in Spring Test or use the Spring Test JUnit4 runner.  

These approaches support both the Camel annotations and Spring annotations. However, they do NOT have feature 
 with:parity

org.apache.camel.test.CamelTestSupport
org.apache.camel.test.junit4.CamelTestSupport
org.apache.camel.testng.CamelSpringTestSupport

JUnit 3.x 
(deprecated
) - None
JUnit 4.x - 
None
TestNG - 
None

Camel 
Enhance
d Spring 
Test

JUnit 4.x - 
Camel 
2.10
TestNG - 
Camel 
2.10

Either:

use the   runner with the   org.apache.camel.test.junit4.CamelSpringJUnit4ClassRunner @RunWith
annotation,
or extend   to enable org.apache.camel.testng.AbstractCamelTestNGSpringContextTests feature 

 with   and parity org.apache.camel.test.CamelTestSupport org.apache.camel.test.junit4.
. These classes support the full suite of Spring Test annotations such as  , CamelTestSupport @Autowired @Di

, and  .rtiesContext @ContextConfiguration

JUnit 3.x 
(deprecated) - ca
mel-test-
spring

JUnit 4.x - camel
-test-spring

TestNG - camel-
test-ng

CamelSpringTestSupport

The following Spring test support classes:

org.apache.camel.test.CamelSpringTestSupport
org.apache.camel.test.junit4.CamelSpringTestSupport, and
org.apache.camel.testng.CamelSpringTestSupport

extend their non-Spring aware counterparts:

org.apache.camel.test.CamelTestSupport
org.apache.camel.test.junit4.CamelTestSupport, and 
org.apache.camel.testng.CamelTestSupport

and deliver integration with Spring into your test classes.  

Instead of instantiating the   and routes programmatically, these classes rely on a Spring context to wire the needed components CamelContext
together.  If your test extends one of these classes, you must provide the Spring context by implementing the following method.

javaprotected abstract AbstractApplicationContext createApplicationContext();

You are responsible for the instantiation of the Spring context in the method implementation.  All of the features available in the non-Spring aware 
counterparts from  are available in your test.Camel Test

https://cwiki.apache.org/confluence/display/CAMEL/Testing
http://testng.org
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test#CamelTest-FeaturesProvidedbyCamelTestSupport
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test#CamelTest-FeaturesProvidedbyCamelTestSupport
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test#CamelTest-FeaturesProvidedbyCamelTestSupport
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test#CamelTest-FeaturesProvidedbyCamelTestSupport
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test#CamelTest-FeaturesProvidedbyCamelTestSupport
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Test


Plain Spring Test

In this approach, your test classes directly inherit from the Spring Test abstract test classes or use the JUnit 4.x test runner provided in Spring Test.  This 
approach supports dependency injection into your test class and the full suite of Spring Test annotations. However, it does not support the features 
provided by the   classes.CamelSpringTestSupport

Plain Spring Test using JUnit 3.x with XML Config Example

Here is a simple unit test using JUnit 3.x support from Spring Test using  .XML Config {snippet:lang=java|id=example|url=camel/trunk/components/camel-
Notice that we use   on the test methods to force   to spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java} @DirtiesContext Spring Testing

automatically reload the   after each test method - this ensures that the tests don't clash with each other, e.g., one test method sending to an CamelContext
endpoint that is then reused in another test method.

Also notice the use of   to indicate that by default we should look for the file  to configure @ContextConfiguration FilterTest-context.xml on the classpath
the test case. The test context looks like:{snippet:lang=xml|id=example|url=camel/trunk/components/camel-spring/src/test/resources/org/apache/camel

This test will load a Spring XML configuration file called  from the classpath in the /spring/patterns/FilterTest-context.xml} FilterTest-context.xml
same package structure as the   class and initialize it along with any Camel routes we define inside it, then inject the instanceFilterTest CamelContext 
into our test case.

For instance, like this maven folder layout:

src/test/java/org/apache/camel/spring/patterns/FilterTest.java src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml

Plain Spring Test Using JUnit 4.x With Java Config Example

You can completely avoid using an XML configuration file by using .  Here is a unit test using JUnit 4.x support from Spring Test using Spring Java Config J
.ava Config {snippet:lang=java|id=example|url=camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns

This is similar to the XML Config example above except that there is no XML file and instead the nested  class does all of /FilterTest.java} ContextConfig
the configuration; so your entire test case is contained in a single Java class. We currently have to reference by class name this class in the @ContextCon

 which is a bit ugly. Please vote for  to address this and make Spring Test work more cleanly with Spring JavaConfig.figuration SJC-238

Plain Spring Test Using JUnit 4.0.x Runner With XML Config

You can avoid extending Spring classes by using the   provided by Spring Test.  This custom JUnit runner means you are SpringJUnit4ClassRunner
free to choose your own class hierarchy while retaining all the capabilities of Spring Test.

This is for Spring 4.0.x. If you use Spring 4.1 or newer, then see the next section.
java@RunWith(SpringJUnit4ClassRunner.class) @ContextConfiguration public class MyCamelTest {     @Autowired     protected CamelContext 
camelContext;     @EndpointInject(uri = "mock:foo")     protected MockEndpoint foo; @Test @DirtiesContext     public void testMocksAreValid() throws 
Exception { // ...                foo.message(0).header("bar").isEqualTo("ABC");         MockEndpoint.assertIsSatisfied(camelContext);     } }

Plain Spring Test Using JUnit 4.1.x Runner With XML Config

You can avoid extending Spring classes by using the   provided by Spring Test.  This custom JUnit runner means you are SpringJUnit4ClassRunner
free to choose your own class hierarchy while retaining all the capabilities of Spring Test.

From , you need to use the   annotation to configure it to use Camel testing, as shown below.Spring 4.1 @BootstrapWith
java@RunWith(CamelSpringJUnit4ClassRunner.class) @BootstrapWith(CamelTestContextBootstrapper.class) @ContextConfiguration public class 
MyCamelTest {     @Autowired     protected CamelContext camelContext;     @EndpointInject(uri = "mock:foo")     protected MockEndpoint foo; @Test 
@DirtiesContext     public void testMocksAreValid() throws Exception { // ...                foo.message(0).header("bar").isEqualTo("ABC");         MockEndpoint.
assertIsSatisfied(camelContext);     } }

Camel Enhanced Spring Test

Using the  runner with the   annotation or extending org.apache.camel.test.junit4.CamelSpringJUnit4ClassRunner @RunWith org.apache.
 provides the full feature set of Spring Test with support for the feature set provided in camel.testng.AbstractCamelTestNGSpringContextTests

the   classes.  CamelTestSupport

A number of Camel specific annotations have been developed in order to provide for declarative manipulation of the Camel context(s) involved in the 
test.  These annotations free your test classes from having to inherit from the   classes and also reduce the amount of code CamelSpringTestSupport
required to customize the tests.

Annotation Class Applies 
To

Description Default 
Behavioir 
If Not 
Present

Default 
Behavior If 
Present

org.apache.camel.
test.spring.
DisableJmx

Class Indicates if JMX should be globally disabled in the CamelContexts that are 
bootstrapped  during the test through the use of Spring Test loaded application contexts.

JMX is 
disabled

JMX is disabled

org.apache.camel.
test.spring.
ExcludeRoutes

Class Indicates if certain route builder classes should be excluded from discovery.  Initializes a 
 to exclude a set of given org.apache.camel.spi.PackageScanClassResolver

classes from being resolved. Typically this is used at test time to exclude certain 
routes, which might otherwise be just noisy, from being discovered and initialized.

Not enabled 
and no 
routes are 
excluded

No routes are 
excluded

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Java+Config
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java
http://jira.springframework.org/browse/SJC-238


org.apache.camel.
test.spring.
LazyLoadTypeConvert
ers

Class Deprecated.

Indicates if the CamelContexts that are bootstrapped during the test through the use of 
Spring Test loaded application contexts should use lazy loading of type converters.

Type 
converters 
are not lazy 
loaded

Type converters 
are not lazy loaded

org.apache.camel.
test.spring.
MockEndpoints

Class Triggers the auto-mocking of endpoints whose URIs match the provided filter.  The 
default filter is   which matches all endpoints.  See "*" org.apache.camel.impl.

 for more details on the registration of the InterceptSendToMockEndpointStrategy
mock endpoints.

Not enabled All endpoints are 
sniffed and 
recorded in a 
mock endpoint.

org.apache.camel.
test.spring.
MockEndpointsAndSkip

Class Triggers the auto-mocking of endpoints whose URIs match the provided filter.  The 
default filter is , which matches all endpoints.  See "*" org.apache.camel.impl.

 for more details on the registration of the mock InterceptSendToMockEndpointStrategy
endpoints.  This annotation will also skip sending the message to matched endpoints as 
well.

Not enabled All endpoints are 
sniffed and 
recorded in a 
mock 
endpoint.  The 
original endpoint 
is not invoked.

org.apache.camel.
test.spring.
ProvidesBreakpoint

Method Indicates that the annotated method returns an org.apache.camel.spi.
 for use in the test.  Useful for intercepting traffic to all endpoints or simply Breakpoint

for setting a break point in an IDE for debugging.  The method must be public, static, 
take no arguments, and return .org.apache.camel.spi.Breakpoint

N/A The returned Brea
 is kpoint

registered in the 
CamelContext(s)

org.apache.camel.
test.spring.
ShutdownTimeout

Class Indicates to set the shutdown timeout of all CamelContexts instantiated through the use 
of Spring Test loaded application contexts.  If no annotation is used, the timeout 
is automatically reduced to 10 seconds by the test framework.

10 seconds 10 seconds

org.apache.camel.
test.spring.
UseAdviceWith

Class Indicates the use of   within the test class.  If a class is annotated adviceWith()
with this annotation and   returns true, any CamelContexts UseAdviceWith#value()
bootstrapped during the test through the use of Spring Test loaded application contexts 
will not be started automatically. 

The test author is responsible for injecting the Camel contexts into the test and 
executing   on them at the appropriate time after any advice CamelContext#start()
has been applied to the routes in the CamelContext(s).

CamelContex
ts do not 
automatically 
start.

CamelContexts do 
not automatically 
start.

org.apache.camel.
test.spring.
UseOverrideProperti
esWithPropertiesCom
ponent

Method Camel 2.16:Indicates that the annotated method returns a   java.util.Properties
for use in the test, and that those properties override any existing properties configured 
on the .PropertiesComponent

  Override properties

The following example illustrates the use of the  annotation in order to setup mock endpoints as interceptors on all endpoints using the @MockEndpoints
Camel Log component and the  annotation to enable JMX which is disabled during tests by default.  @DisableJmx

Note: we still use the  annotation to ensure that the CamelContext, routes, and mock endpoints are reinitialized between test methods.@DirtiesContext j
ava@RunWith(CamelSpringJUnit4ClassRunner.class) @BootstrapWith(CamelTestContextBootstrapper.class) @ContextConfiguration @DirtiesContext
(classMode = ClassMode.AFTER_EACH_TEST_METHOD) @MockEndpoints("log:*") @DisableJmx(false) public class 
CamelSpringJUnit4ClassRunnerPlainTest { @Autowired protected CamelContext camelContext2; protected MockEndpoint mockB; @EndpointInject(uri = 
"mock:c", context = "camelContext2") protected MockEndpoint mockC; @Produce(uri = "direct:start2", context = "camelContext2") protected 
ProducerTemplate start2; @EndpointInject(uri = "mock:log:org.apache.camel.test.junit4.spring", context = "camelContext2") protected MockEndpoint 
mockLog; @Test public void testPositive() throws Exception { mockC.expectedBodiesReceived("David"); mockLog.expectedBodiesReceived("Hello 
David"); start2.sendBody("David"); MockEndpoint.assertIsSatisfied(camelContext); }

Adding More Mock Expectations

If you wish to programmatically add any new assertions to your test you can easily do so with the following. Notice how we use   to @EndpointInject
inject a Camel endpoint into our code then the  API to add an expectation on a specific message.Mock

java@ContextConfiguration public class MyCamelTest extends AbstractJUnit38SpringContextTests { @Autowired protected CamelContext camelContext; 
@EndpointInject(uri = "mock:foo") protected MockEndpoint foo; public void testMocksAreValid() throws Exception { // lets add more expectations foo.
message(0).header("bar").isEqualTo("ABC"); MockEndpoint.assertIsSatisfied(camelContext); } }

Further Processing the Received Messages

Sometimes once a  endpoint has received some messages you want to then process them further to add further assertions that your test case Mock
worked as you expect.

So you can then process the received message exchanges if you like...

java@ContextConfiguration public class MyCamelTest extends AbstractJUnit38SpringContextTests { @Autowired protected CamelContext camelContext; 
@EndpointInject(uri = "mock:foo") protected MockEndpoint foo; public void testMocksAreValid() throws Exception { // lets add more expectations... 
MockEndpoint.assertIsSatisfied(camelContext); // now lets do some further assertions List<Exchange> list = foo.getReceivedExchanges(); for (Exchange 
exchange : list) { Message in = exchange.getIn(); // ... } } }

Sending and Receiving Messages

It might be that the  you have defined in either  XML or using the Java  do all of the sending and receiving and Enterprise Integration Patterns Spring DSL
you might just work with the  endpoints as described above. However sometimes in a test case its useful to explicitly send or receive messages Mock
directly.

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/main/java/org/apache/camel/impl/InterceptSendToMockEndpointStrategy.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/main/java/org/apache/camel/impl/InterceptSendToMockEndpointStrategy.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Spring
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Mock


To send or receive messages you should use the  mechanism. For example to send messages inject a   using the Bean Integration ProducerTemplate @E
 annotation then call the various send methods on this object to send a message to an endpoint. To consume messages use the ndpointInject @Messa

 annotation on a method to have the method invoked when a message is received.geDriven

javapublic class Foo { @EndpointInject(uri = "activemq:foo.bar") ProducerTemplate producer; public void doSomething() { // lets send a message! 
producer.sendBody("<hello>world!</hello>"); } // lets consume messages from the 'cheese' queue @MessageDriven(uri="activemq:cheese") public void 
onCheese(String name) { // ... } }

See Also

A  along with its real example test case using Mock and Spring Spring XML
Bean Integration
Mock endpoint
Test endpoint

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/InterceptSendToMockEndpointStrategyTest.java
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/InterceptSendToMockEndpointStrategyTest.xml
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test

	Spring Testing

