
Spring

Spring Support

Apache Camel is designed to work nicely with the in a number of ways.Spring Framework

Camel uses Spring Transactions as the default transaction handling in components like and JMS JPA
Camel works with Spring 2 XML processing with the Xml Configuration
Camel Spring XML Schema's is defined at Xml Reference
Camel supports a powerful version of which can use powerful routing between the client and server side along with using all of Spring Remoting
the available for the transportComponents
Camel provides powerful with any bean defined in a Spring .Bean Integration ApplicationContext
Camel integrates with various Spring helper classes; such as providing support for Spring Resources etcType Converter
Allows Spring to dependency inject instances or the instance itself and auto-expose Spring beans as components and Component CamelContext
endpoints.
Allows you to reuse the framework to simplify your unit and integration testing using and Camel's Spring Testing Enterprise Integration Patterns
powerful and endpointsMock Test
From : Camel supports Spring Boot using the component.Camel 2.15 camel-spring-boot
From : Camel supports Spring Cache based Idempotent repositoryCamel 2.17.1

Using Spring to configure the CamelContext

You can configure a inside any using the . This will automatically the along CamelContext spring.xml CamelContextFactoryBean start CamelContext
with any referenced along any referenced and instances.Routes Component Endpoint

Adding Camel schema
Configure in two ways:Routes

Using Java Code
Using Spring XML

Adding Camel Schema

For Camel 1.x you need to use the following namespace:

http://activemq.apache.org/camel/schema/spring

with the following schema location:

http://activemq.apache.org/camel/schema/spring/camel-spring.xsd

You need to add Camel to the declarationschemaLocation

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd

So the XML file looks like this:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd
 ">

Using Namespacecamel:

Or you can refer to the camel XSD in the XML declaration:

xmlns:camel="http://camel.apache.org/schema/spring"

http://www.springframework.org/
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Reference
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Boot
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/CamelContextFactoryBean.html
https://cwiki.apache.org/confluence/display/CAMEL/Lifecycle
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Routes

... so the declaration is:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.
xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

... and then use the namespace prefix, and you can omit the inline namespace declaration:camel:

<camel:camelContext id="camel5">
 <camel:package>org.apache.camel.spring.example</camel:package>
</camel:camelContext>

Advanced Configuration Using Spring

See more details at Advanced configuration of CamelContext using Spring

Using Java Code

You can use Java Code to define your implementations. These can be defined as beans in spring and then referenced in your camel context RouteBuilder
e.g.

<camelContext id="camel5" xmlns="http://camel.apache.org/schema/spring">
 <routeBuilder ref="myBuilder" />
</camelContext>

<bean id="myBuilder" class="org.apache.camel.spring.example.test1.MyRouteBuilder"/>

Using <package>

Camel also provides a powerful feature that allows for the automatic discovery and initialization of routes in given packages. This is configured by adding
tags to the camel context in your spring context definition, specifying the packages to be recursively searched for implementations. To use RouteBuilder
this feature in , requires a tag specifying a comma separated list of packages that should be searched e.g.1.X <package></package>

camelContextRouteBuilderRef.xml

<camel:camelContext id="camel5">
 <camel:package>org.apache.camel.spring.example</camel:package>
</camel:camelContext>

Use caution when specifying the package name as or a sub package of this. This causes Camel to search in its own packages for org.apache.camel
your routes which could cause problems.

Will ignore already instantiated classes

The and will skip any classes which has already been created by Spring etc. So if you define a route builder as a spring <package> <packageScan>
bean tag then that class will be skipped. You can include those beans using or the feature.<routeBuilder ref="theBeanId"/> <contextScan>

Using <packageScan>

In Camel 2.0 this has been extended to allow selective inclusion and exclusion of discovered route classes using Ant like path matching. In spring this is
specified by adding a tag. The tag must contain one or more elements (similar to), and optionally one or more <packageScan/> package 1.x includes
or elements specifying patterns to be applied to the fully qualified names of the discovered classes. e.g.,excludes

https://cwiki.apache.org/confluence/display/CAMEL/Advanced+configuration+of+CamelContext+using+Spring
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <packageScan>
 <package>org.example.routes</package>
 <excludes>**.*Excluded*</excludes>
 <includes>**.*</includes>
 </packageScan>
</camelContext>

Exclude patterns are applied before the include patterns. If no include or exclude patterns are defined then all the Route classes discovered in the
packages will be returned.

In the above example, camel will scan all the package and any subpackages for classes. Say the scan finds two org.example.routes RouteBuilder
, one in called and another in a subpackage . The fully qualified RouteBuilders org.example.routes MyRoute MyExcludedRoute excluded

names of each of the classes are extracted (,) and the org.example.routes.MyRoute org.example.routes.excluded.MyExcludedRoute
include and exclude patterns are applied.

The exclude pattern is going to match the FQCN and veto camel from **.*Excluded* org.example.routes.excluded.MyExcludedRoute
initializing it.

Under the covers, this is using Spring's implementation, which matches as followsAntPatternMatcher

? matches one character * matches zero or more characters ** matches zero or more segments of a fully qualified name

For example:

**.*Excluded* would match , or .org.simple.Excluded org.apache.camel.SomeExcludedRoute org.example.RouteWhichIsExcluded

**.??cluded* would match , but match .org.simple.IncludedRoute org.simple.Excluded not org.simple.PrecludedRoute

Using contextScan

Available as of Camel 2.4

You can allow Camel to scan the container context, e.g. the Spring for route builder instances. This allow you to use the Spring ApplicationContext <c
 feature and have Camel pickup any instances which was created by Spring in its scan process.omponent-scan> RouteBuilder

<!-- enable Spring @Component scan -->
<context:component-scan base-package="org.apache.camel.spring.issues.contextscan"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <!-- and then let Camel use those @Component scanned route builders -->
 <contextScan/>
</camelContext>

This allows you to just annotate your routes using the Spring and have those routes included by Camel:@Component

@Component
public class MyRoute extends SpringRouteBuilder {
 @Override public void configure() throws Exception {
 from("direct:start") .to("mock:result");
 }
}

You can also use the ANT style for inclusion and exclusion, as mentioned above in the documentation.<packageScan>

how do i import routes from other xml files

Test Time Exclusion.

At test time it is often desirable to be able to selectively exclude matching routes from being initialized that are not applicable or useful to the test scenario.
For instance you might a spring context file and three Route builders and in the routes-context.xml , RouteA RouteB RouteC org.example.

 package. The definition would discover all three of these routes and initialize them.routes packageScan

Say is not applicable to our test scenario and generates a lot of noise during test. It would be nice to be able to exclude this route from this RouteC
specific test. The class has been modified to allow this. It provides two methods (and) that SpringTestSupport excludedRoute excludedRoutes
may be overridden to exclude a single class or an array of classes.

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html
#

public class RouteAandRouteBOnlyTest extends SpringTestSupport {
 @Override
 protected Class excludeRoute() {
 return RouteC.class;
 }
}

java

In order to hook into the initialization by spring to exclude the we need to intercept the spring camelContext MyExcludedRouteBuilder.class
context creation. When overriding to create the spring context, we call the createApplicationContext getRouteExcludingApplicationContext

 method to provide a special parent spring context that takes care of the exclusion.()

@Override
protected AbstractXmlApplicationContext createApplicationContext() {
 return new ClassPathXmlApplicationContext(
 new String[] {"routes-context.xml"}, getRouteExcludingApplicationContext());
}

RouteC will now be excluded from initialization. Similarly, in another test that is testing only , we could exclude and by overriding:RouteC RouteB RouteA

@Override
protected Class[] excludeRoutes() {
 return new Class[]{RouteA.class, RouteB.class};
}

Using Spring XML

You can use Spring 2.0 XML configuration to specify your for such as in the following .Xml Configuration Routes example

<camelContext id="camel-A" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:start"/>
 <to uri="mock:result"/>
 </route>
</camelContext>

Configuring Components and Endpoints
You can configure your or instances in your XML as follows in .Component Endpoint Spring this example

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" disabled="true"/>
</camelContext>

<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>
 </bean>
 </property>
</bean>

Which allows you to configure a component using some name (in the above example), then you can refer to the component using activemq activemq:
. This works by the lazily fetching components from the spring context for the scheme [queue:|topic:]destinationName SpringCamelContext

name you use for .Endpoint URIs

https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Routes
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/routingUsingCamelContextFactory.xml
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://svn.apache.org/repos/asf/camel/trunk/components/camel-jms/src/test/resources/org/apache/camel/component/jms/jmsRouteUsingSpring.xml
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs

For more detail see .Configuring Endpoints and Components

Spring Cache Idempotent Repository

Available as of Camel 2.17.1

<bean id="repo" class="org.apache.camel.spring.processor.idempotent.SpringCacheIdempotentRepository">
 <constructor-arg>
 <bean class="org.springframework.cache.guava.GuavaCacheManager"/>
</constructor-arg>
 <constructor-arg value="idempotent"/>
</bean>
<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route id="idempotent-cache">
 <from uri="direct:start" />
 <idempotentConsumer messageIdRepositoryRef="repo" skipDuplicate="true">
 <header>MessageId</header>
 <to uri="log:org.apache.camel.spring.processor.idempotent?level=INFO&showAll=true&multiline=true"
/> <to uri="mock:result"/>
 </idempotentConsumer>
 </route>
</camelContext>

CamelContextAware

If you want to be injected with the in your POJO just implement the ; then when Spring creates your POJO the CamelContext CamelContextAware interface
 will be injected into your POJO. Also see the for further injections.CamelContext Bean Integration

Integration Testing

To avoid a hung route when testing using Spring Transactions see the note about Spring Integration Testing under .Transactional Client

See also

Spring JMS Tutorial
Creating a new Spring based Camel Route
Spring example
Xml Reference
Advanced configuration of CamelContext using Spring
How Do I Import Routes From Other XML Files?

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=53767
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContextAware.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-JmsRemoting
https://cwiki.apache.org/confluence/display/CAMEL/Creating+a+new+Spring+based+Camel+Route
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Example
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Reference
https://cwiki.apache.org/confluence/display/CAMEL/Advanced+configuration+of+CamelContext+using+Spring
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20316268

	Spring

