Spring

Spring Support
Apache Camel is designed to work nicely with the Spring Framework in a number of ways.

Camel uses Spring Transactions as the default transaction handling in components like IMS and JPA

Camel works with Spring 2 XML processing with the Xml Configuration

Camel Spring XML Schema's is defined at Xml Reference

Camel supports a powerful version of Spring Remoting which can use powerful routing between the client and server side along with using all of

the available Components for the transport

Camel provides powerful Bean Integration with any bean defined in a Spring Appl i cat i onCont ext .

Camel integrates with various Spring helper classes; such as providing Type Converter support for Spring Resources etc

® Allows Spring to dependency inject Component instances or the CamelContext instance itself and auto-expose Spring beans as components and
endpoints.

® Allows you to reuse the Spring Testing framework to simplify your unit and integration testing using Enterprise Integration Patterns and Camel's
powerful Mock and Test endpoints

® From Camel 2.15: Camel supports Spring Boot using the canel - spri ng- boot component.

® From Camel 2.17.1: Camel supports Spring Cache based Idempotent repository

Using Spring to configure the CamelContext

You can configure a Canel Cont ext inside any spri ng. xm using the CamelContextFactoryBean. This will automatically start the CamelContext along
with any referenced Routes along any referenced Component and Endpoint instances.

® Adding Camel schema

® Configure Routes in two ways:
© Using Java Code
© Using Spring XML

Adding Camel Schema
For Camel 1.x you need to use the following namespace:

http://activenyg. apache. org/ canmel / schema/ spri ng

with the following schema location:

http://activeny. apache. org/ canel / schema/ spri ng/ canel - spri ng. xsd

You need to add Camel to the schenmaLocat i on declaration

http://canel . apache. org/ schema/ spring http://canel.apache. org/schena/ spring/ canel - spring. xsd

So the XML file looks like this:

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schenaLocati on="
http://ww. springfranework. org/ schema/ beans http://ww. springfranmework. org/ schema/ beans/ spri ng- beans. xsd
http://canel . apache. org/ schema/ spring http://canel.apache. org/ schema/ spring/ canel - spri ng. xsd

Using canel : Namespace

Or you can refer to the camel XSD in the XML declaration:

xm ns: canel ="htt p://canel . apache. or g/ schema/ spri ng"

http://www.springframework.org/
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JPA
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Reference
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Test
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Boot
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/CamelContextFactoryBean.html
https://cwiki.apache.org/confluence/display/CAMEL/Lifecycle
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Routes

... S0 the declaration is:

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: canel ="http://canel . apache. or g/ schema/ spri ng"
xsi : schenaLocati on="
http://ww. springframewor k. or g/ schema/ beans http://ww. springframework. or g/ schena/ beans/ spri ng- beans.
xsd
http://canel . apache. org/ schema/ spring http://canel.apache. org/schema/ spring/ canel -spring. xsd">

.. and then use the canel : namespace prefix, and you can omit the inline namespace declaration:

<canel : canel Cont ext id="canel 5">
<canel : package>or g. apache. canel . spri ng. exanpl e</ canel : package>
</ canel : canel Cont ext >

Advanced Configuration Using Spring

See more details at Advanced configuration of CamelContext using Spring

Using Java Code

You can use Java Code to define your RouteBuilder implementations. These can be defined as beans in spring and then referenced in your camel context
e.g.

<canel Cont ext id="canel5" xnl ns="http://canel.apache. org/schema/spring">
<rout eBui |l der ref="nyBuilder" />
</ canel Cont ext >

<bean i d="myBuil der" class="org.apache. canel . spring. exanpl e.test1l. MyRout eBui | der"/>

Using <package>

Camel also provides a powerful feature that allows for the automatic discovery and initialization of routes in given packages. This is configured by adding
tags to the camel context in your spring context definition, specifying the packages to be recursively searched for RouteBuilder implementations. To use
this feature in 1. X, requires a <package></ package> tag specifying a comma separated list of packages that should be searched e.g.

camelContextRouteBuilderRef.xml

<canel : canmel Cont ext id="canel 5">
<camel : package>or g. apache. canel . spri ng. exanpl e</ canel : package>
</ canel : canel Cont ext >

Use caution when specifying the package name as or g. apache. canel or a sub package of this. This causes Camel to search in its own packages for
your routes which could cause problems.

Will ignore already instantiated classes

The <package> and <packageScan> will skip any classes which has already been created by Spring etc. So if you define a route builder as a spring
bean tag then that class will be skipped. You can include those beans using <r out eBui | der ref ="t heBeanl d"/ > or the <cont ext Scan> feature.

Using <packageScan>

In Camel 2.0 this has been extended to allow selective inclusion and exclusion of discovered route classes using Ant like path matching. In spring this is
specified by adding a <packageScan/ > tag. The tag must contain one or more package elements (similar to 1. x), and optionally one or more i ncl udes
or excl udes elements specifying patterns to be applied to the fully qualified names of the discovered classes. e.g.,

https://cwiki.apache.org/confluence/display/CAMEL/Advanced+configuration+of+CamelContext+using+Spring
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder
https://cwiki.apache.org/confluence/display/CAMEL/RouteBuilder

<carel Cont ext xm ns="http://canel . apache. or g/ schena/ spri ng">
<packageScan>
<package>or g. exanpl e. r out es</ package>
<excl udes>**. *Excl uded* </ excl udes>
<i ncl udes>**. *</incl udes>
</ packageScan>
</ canel Cont ext >

Exclude patterns are applied before the include patterns. If no include or exclude patterns are defined then all the Route classes discovered in the
packages will be returned.

In the above example, camel will scan all the or g. exanpl e. r out es package and any subpackages for Rout eBui | der classes. Say the scan finds two
Rout eBui | der s, one in or g. exanpl e. r out es called MyRout e and another MyExcl udedRout e in a subpackage excl uded. The fully qualified
names of each of the classes are extracted (or g. exanpl e. r out es. MyRout e, or g. exanpl e. r out es. excl uded. MyExcl udedRout e) and the
include and exclude patterns are applied.

The exclude pattern **. * Excl uded* is going to match the FQCN or g. exanpl e. r out es. excl uded. MyExcl udedRout e and veto camel from
initializing it.

Under the covers, this is using Spring's AntPatternMatcher implementation, which matches as follows

? matches one character * matches zero or more characters ** matches zero or more segments of a fully qualified name

For example:

** *Excl uded* would match or g. si npl e. Excl uded, or g. apache. canel . SoneExcl udedRout e or or g. exanpl e. Rout eWhi chl sExcl uded.

** 2??cl uded* would match or g. si npl e. I ncl udedRout e, or g. si npl e. Excl uded but not match or g. si npl e. Precl udedRout e.

Using cont ext Scan

Available as of Camel 2.4

You can allow Camel to scan the container context, e.g. the Spring Appl i cat i onCont ext for route builder instances. This allow you to use the Spring <c
onponent - scan> feature and have Camel pickup any Rout eBui | der instances which was created by Spring in its scan process.

<!-- enabl e Spring @onponent scan -->
<cont ext : conponent - scan base- package="org. apache. canel . spri ng. i ssues. cont ext scan"/ >

<canel Cont ext xnl ns="http://canel.apache. org/ schema/ spring">
<l-- and then | et Canel use those @onponent scanned route builders -->
<cont ext Scan/ >

</ canel Cont ext >

This allows you to just annotate your routes using the Spring @onponent and have those routes included by Camel:

@Conponent
public class MyRoute extends SpringRouteBuilder {
@verride public void configure() throws Exception {
from"direct:start") .to("nock:result");
}
}

You can also use the ANT style for inclusion and exclusion, as mentioned above in the <packageScan> documentation.

how do i import routes from other xml files

Test Time Exclusion.

At test time it is often desirable to be able to selectively exclude matching routes from being initialized that are not applicable or useful to the test scenario.
For instance you might a spring context file r out es- cont ext . xml and three Route builders Rout eA, Rout eB and Rout eCin the or g. exanpl e.
rout es package. The packageScan definition would discover all three of these routes and initialize them.

Say Rout eCis not applicable to our test scenario and generates a lot of noise during test. It would be nice to be able to exclude this route from this
specific test. The Spri ngTest Support class has been modified to allow this. It provides two methods (excl udedRout e and excl udedRout es) that
may be overridden to exclude a single class or an array of classes.

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html
#

public class RouteAandRout eBOnl yTest extends SpringTest Support {
@verride
protected C ass excludeRoute() {
return RouteC. cl ass;
}
}

java

In order to hook into the canel Cont ext initialization by spring to exclude the MyExcl udedRout eBui | der . cl ass we need to intercept the spring
context creation. When overriding cr eat eAppl i cati onCont ext to create the spring context, we call the get Rout eExcl udi ngAppl i cati onCont ext
() method to provide a special parent spring context that takes care of the exclusion.

@verride
prot ected Abstract Xnl Appli cati onCont ext createApplicationContext() {
return new C assPat hXm Appl i cati onCont ext (
new String[] {"routes-context.xm "}, getRouteExcl udi ngApplicationContext());

Rout eC will now be excluded from initialization. Similarly, in another test that is testing only Rout eC, we could exclude Rout eB and Rout eA by overriding:

@verride
protected O ass[] excludeRoutes() {
return new C ass[]{RouteA. class, RouteB.class};

}

Using Spring XML

You can use Spring 2.0 XML configuration to specify your Xml Configuration for Routes such as in the following example.

<canel Cont ext id="canel-A" xm ns="http://canel.apache. org/ schema/spring">
<rout e>
<fromuri="seda: start"/>
<to uri="nock:result"/>
</ rout e>
</ canel Cont ext >

Configuring Components and Endpoints

You can configure your Component or Endpoint instances in your Spring XML as follows in this example.

<canel Context id="canel" xm ns="http://canel.apache. org/schena/spring">
<j nxAgent id="agent" disabled="true"/>
</ canel Cont ext >

<bean id="activenq" class="org.apache. activeny. canel . conponent. Acti veMonponent ">
<property name="connecti onFactory">
<bean cl ass="org. apache. acti venq. Acti veMQConnecti onFactory">
<property nanme="broker URL" val ue="vm//| ocal host ?br oker. persi st ent =f al se&anp; br oker. useJnmx=f al se"/ >
</ bean>
</ property>
</ bean>

Which allows you to configure a component using some name (act i venq in the above example), then you can refer to the component using act i veny:
[queue: | t opi c:] desti nati onNane. This works by the Spri ngCanel Cont ext lazily fetching components from the spring context for the scheme
name you use for Endpoint URIs.

https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Routes
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/routingUsingCamelContextFactory.xml
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://svn.apache.org/repos/asf/camel/trunk/components/camel-jms/src/test/resources/org/apache/camel/component/jms/jmsRouteUsingSpring.xml
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs

For more detail see Configuring Endpoints and Components.

Spring Cache ldempotent Repository

Available as of Camel 2.17.1

<bean id="repo" class="org. apache. camel . spring. processor. i denpotent. Spri ngCachel denpot ent Reposi tory">
<constructor-arg>
<bean cl ass="org. spri ngframewor k. cache. guava. GuavaCacheManager"/ >
</ constructor-arg>
<constructor-arg val ue="i denpotent"/>
</ bean>
<canel Cont ext xnl ns="http://canel.apache. org/ schema/ spring">
<route id="idenpotent-cache">
<fromuri="direct:start" />
<i denpot ent Consuner nessagel dRepositoryRef="repo" ski pDuplicate="true">
<header >Messagel d</ header >
<to uri="lo0g: org. apache. canel . spri ng. processor. i denpot ent ?| evel =| NFO&anp; showAl | =t r ue&anp; mul tiline=true"
/> <to uri="nock:result"/>
</ i denpot ent Consuner >
</ route>
</ canel Cont ext >

CamelContextAware

If you want to be injected with the CamelContext in your POJO just implement the CamelContextAware interface; then when Spring creates your POJO the
Canel Cont ext will be injected into your POJO. Also see the Bean Integration for further injections.

Integration Testing

To avoid a hung route when testing using Spring Transactions see the note about Spring Integration Testing under Transactional Client.

See also

Spring JMS Tutorial

Creating a new Spring based Camel Route

Spring example

Xml Reference

Advanced configuration of CamelContext using Spring
How Do | Import Routes From Other XML Files?

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=53767
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContextAware.html
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-JmsRemoting
https://cwiki.apache.org/confluence/display/CAMEL/Creating+a+new+Spring+based+Camel+Route
https://cwiki.apache.org/confluence/display/CAMEL/Spring+Example
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Reference
https://cwiki.apache.org/confluence/display/CAMEL/Advanced+configuration+of+CamelContext+using+Spring
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=20316268

	Spring

