
Composite Application Deployment with SCA Domain
Composite Application Deployment with SCA Domain

The sample scenarios

A retail application is built using SCA. The application is developed and packaged as 3 contributions:

Asset: The common interfaces such as Catalog, Cart, Total
Store: The java implementation of Catalog, ShoppingCart and CurrencyConverter
Store-Client: The store client implementation

Both Store and Store-Client have dependency (importing the interfaces) on Asset.

There are two deployable composites:

StoreClient: It contains the StoreClient component with references to Catalog, Cart and Total
Store: It contains the ShoppingCart, Catalog and CurrencyConverter components

The application will be deployed to different machines or JVMs:

StoreClient: Run the store client
Store: Run the store services

Illustration of an SCA domain

Deployment Steps

Steps Domain 
Services

SPIs Tools Note



Add Assets, Store, and StoreClient contributions 
to the domain

Install
/Uninstall 
contributions

Workspac
e

Static:

Add contribution URLs to the SCA domain 
manager
Create a workspace.xml to list the contributions
Add contributions to a repository 
Dynamic:
Discover contributions from the network 
Watch a "contributions" folder

We can build different ways to make contributions 
available to the SCA domain.

Parse the contributions Contribution 
Processing

Contributi
onScanne
r 
ArtifactPr
ocessor

   

Resolve dependencies across contributions Import/Export 
resolution

Contributi
onDepen
dencyBuil
der

Automatically calculated using the import/export
Assembler can use the admin tool to select a list 
of contributions for a given composite application

We need to find out a collection of contributions to 
support a composite application based on the 
import/export statements

Find/Load/Resolve the composites from the 
contributions:
Store composite
StoreClient composite

The 
assembly 
builders

ArtifactPr
ocessor 
Composit
eBuilder

The endpoints using SCA addresses or relative URIs 
should be resolved against the physical base URIs for 
the bindings based on the node configuration. 
The resolution can be deferred to runtime over a 
service registry (which I treat it as a way to form the 
SCA domain dynamically)

Deployable composites can be designated by the 
contributions. It's also possible that the assembler 
to define a deployment composite on the fly.

Configure two nodes to the SCA domain, one 
to run the StoreClient and the other for Store. 
The Store one requires WS, ATOM and 
JSONRPC

implementatio
n.node

NodeImpl
ementatio
n

Node can be predefined to the SCA domain 
using the admin tools.
Node can also be provisioned from the cloud 
based on the requirements by the composite.
Node can also be discovered on the network.
There are types of nodes too:
Standalone
Webapp
JEE (JSR-88 based deployment)

The node represents the computing capabilities in 
the SCA domain.

Assign a deployment composite to a node:
StoreClient --> node1
Store --> node2

Run the 
composite 
application by 
a node

 
Node can connect to the domain manager to get 
the composite application.
The composite application can also be pushed to 
nodes (running in daemon).
The image of the composite application can be 
saved into a configuration file so that the node 
can run offline without connecting to the domain 
manager.
Nodes can run p2p to consistute the SCA domain 
too.

The deployable image of an SCA composite 
application to a node is the composite and a list of 
contributions to support the composite application.

Monitor and control the services running on a 
node

See what's 
going on, start
/stop the 
services

     


	Composite Application Deployment with SCA Domain

