
Referral Handling Changes
Introduction
Since 1.0 the way referrals are handled in the core and in various layers above have changed. This document is intended to updater those interested in
the details of handling referrals in the server.

Info on Referrals and JNDI
RFC 2251
RFC 3296
JNDI Tutorial on Referral Behavoir

ApacheDS Implementation Notes
Referral handling must be accounted for in two respects. At the protocol level in the MINA LDAP protocol provider (protocol-ldap module) and at the JNDI
level in the core ApacheDS JNDI Provider (core-jndi module). Both must behave according to their respective specifications when dealing with referrals.

Changes Since 1.0

The ReferralInterceptor has been removed. The core of ApacheDS no longer handles referrals at all. All entries stored in the core are represented as
standard entries returned as ServerEntry objects. No longer does the core handle modes of throwing of exceptions, chasing them or ignoring them.
They're just entries in the core.

It is completely the responsibility of the core-jndi module to handle the expected modes and behavior for JNDI LDAP providers while dealing with referrals.
Likewise the protocol-ldap module is responsible for complying with LDAP specification requirements concerning the handling of referral entries with and
without the presence of the ManageDSAiT Control.

Motivation for Changes

The big bang effort to refactor JNDI constructs out of the server achieved many of it's intended goals. JNDI was complicating the picture and often causing
an impedance mismatch if not complete confusion on how to bridge between JNDI and the protocol. There was too much complexity as a result.

With referrals we were mixing into the core, the requirements of JNDI LDAP providers and the LDAP protocol resulting in a mess when handling referrals
in a clear fashion. The code was hard to maintain and difficult to understand. So we removed all the referral handling code which was mostly JNDI specific
out of the core which removed the need to have a ReferralInterceptor all together.

Now it's the job of the LDAP protocol fontend and the core JNDI provider to apply the appropriate behavior in their own specific way. This is cleaner
because it does not mix the two different ways in which these layers above the core must deal with referrals.

Before the protocol-ldap module sat on top of the core which included the JNDI provider implementation. Now the core JNDI provider has been moved out
of the core into it's own module: core-jndi. The protocol-ldap module no longer sits on top of the core JNDI provider but uses a new API to directly tap into
the core without having to understand JNDI and deal with it's quirks.

ManageDsaIT Control

The ASN.1 subsystem understands the ManageDsaIT control and the server publishes that it supports this control in the RootDSE. The control determines
how the LDAP protocol provider handles responses when present and referrals are encountered. There is no longer any JNDI in the protocol provider, so it
does not need to pass controls down into the JNDI provider for the core to make critical decisions about request handing behavior.

Context.REFERRAL Property

The property in the JNDI environment affects the way referrals are handled by JNDI LDAP providers including the core JNDI provider. Context.REFERRAL
According to JNDI specifications:

According to RFC 2251/4511, a referral is returned inside a LdapResult, if the result code is set to , or as one or more referral SearchResultRef
.erence

We will restore a ReferralInterceptor for another reason: to avoid a performance penalty we have when doing a lookup to determinate if an entry
has a referral ancestor. This interceptor will manage the Reefrral cache when adding/deleting or modifying a referral.

http://www.faqs.org/rfcs/rfc2251.html
http://www.faqs.org/rfcs/rfc3296.html
http://java.sun.com/products/jndi/tutorial/ldap/referral/index.html

1.
2.
3.

1.

2.
3.

A JNDI application uses the Context.REFERRAL(in the API reference documentation)
("java.naming.referral") environment property to indicate to the service providers how
to handle referrals. The following table shows the values defined for this property. If this
property has not been set, then the default is to ignore referrals.

Property
Setting

Description

ignore Ignore referrals (they are considered as normal entries)

follow Automatically follow any referrals

throw Throw a ReferralException(in the API reference documentation) for each
referral

Based on the entry point, (via protocol or embedded JNDI) two mechanisms exist for controlling the underlying Referral handing mechanism. One uses
the ManageDsaIT control and the other uses the Context.REFERRAL property. The presence of the ManageDsaIT control is the same as setting the
environment property to or not even setting the property in the environment since by absence the property is defaulted to .ignore ignore

Referral Handling Scenarios
Here's a slightly modified example DIT used in RFC 3296. We'll also use this to elaborate on the behavior of
operations based on the different scenarios outlined in 3296.

Finding target in non-search operations

The handling for , , , and operations to the target entry operated on add compare delete modify modify DN
is the same. The RFC gets a bit confusing when describing different scenarios and it's examples are
lacking. They could have picked referrals where the is not the same as the reference to better DN
demonstrate what they exactly meant. Regardless there seems to be 3 cases worth considering (whether
the added entry is a referral or not is irrelevant) :

target is present, and has no ancestor which is a referral
target is not present, and no ancestor is a referral
target is not present, but an ancestor is a referral

(the special case "target is present, and has an ancestor which is a referral" is impossible...).

If we consider the tree we are using for our samples, those 3 cases can be represented as :

target's DN is "o=MNN,c=WW" or "ou=people, o=MNN, c=WW" (in this last example, the
associated entry will be a referral.
target's DN is "o=absent,c=WW"
target's DN is "cn=Alex karasulu,ou=people,o=MNN,c=WW"

Odd as it sounds, adding an entry which is a subordinate of an existing referral into the server seems to be a possibility, using the
ManageDSAIT control. This is not the case. As any modification of the data should keep the server in a consistent state, such an addition is
obviously forbidden. (this has been discussed here

The core-JNDI provider does not, at the moment, support the 'follow' property.

Legend

Green nodes are actual entries. Red nodes are referrals.

http://www.ietf.org/mail-archive/web/ldapext/current/msg00081.html

OU=People,O=MNN,C=WW

ou: People
ref: ldap://hostb/OU=People,
DC=example,DC=com
ref: ldap://hostc/OU=People,
O=MNN,C=WW
objectClass: referral
objectClass: extensibleObject

OU=Roles,O=MNN,C=WW

ou: Roles
ref: ldap://hostd/ou=Roles,
dc=apache,dc=org
objectClass: referral
objectClass: extensibleObject

Referrals and LDAP operations

We now will describe the way Referrals are handled, depending on the operation the server will receive. We will consider the three different cases :

through JNDI
through the server own API (CoreAPI)

Add Operation handling

test target
exists

is a
referral

has an
ancestor

JNDI/Core
handling

Description

1 no no no Irrelevant Adds the entry into the server

2 yes JNDI ignore The JNDI provider will throw a
PartialResultException

3 JNDI throw The JNDI provider will throw a
LdapReferralException

4 Core API The Core API will throw a LdapReferralException
Equivalent to the JNDI throw handling

5 Core API+ManageDsaIT The Core API will throw a PartialResultException
Equivalent to the JNDI ignore handling

6 yes irrelevant no irrelevant Throws an EntryAlreadyExists error

Test 1

We try to add the following entry :

dn: cn=Alex karasulu, c=MNN, c=WW
ObjectClass: top
ObjectClass:person
cn: Alex Karasulu
sn: alex

As a result, we should be able to find the entry in the local server.

Test 2 & 5

We try to add the following entry, using the Context.REFERRAL=ignore property (JNDI) or adding the ManageDsaIT control (Core API) :

dn: cn=Alex karasulu, ou=users, ou=people , c=MNN, c=WW
ObjectClass: top
ObjectClass:person
cn: Alex Karasulu
sn: alex

We should get a PartialResultException containing the resultou=people,c=MNN,c=WW

Test 3 & 4

We try to add the following entry, using the Context.REFERRAL=throw property (JNDI) or without the ManageDsaIT control (Core API) : :

dn: cn=Alex karasulu, ou=users, ou=people , c=MNN, c=WW
ObjectClass: top
ObjectClass:person
cn: Alex Karasulu
sn: alex

We should get a LdapReferralException.

Test 6

We try to add the following entry twice :

dn: cn=Alex karasulu, c=MNN, c=WW
ObjectClass: top
ObjectClass:person
cn: Alex Karasulu
sn: alex

As a result, we should get an EntryAlreadyExist exception

Delete Operation handling

test target
exists

is a
referral

has an
ancestor

JNDI/Core
handling

Description

1 no irrelevant no Irrelevant Returns a NoSuchObject exception

2 yes JNDI+throw Returns a PartialResult exception

 JNDI+ignore Throws a LdapReferralExceptionexception

3 Core API Returns a PartialResult exception

 Core API+ManageDsaIt Throws a LdapReferralException
exception

4 yes no no Irrelevant Remove the entry from the server

5 yes no JND+throw Throw a LdapReferralException exception

6 JNDI+ignore Remove the entry from the server

7 CoreAPI Throw a LdapReferralException exception

8 Core API+ManageDsaIt Remove the entry from the server

Test 1

Trying to delete dn: should failcn=not present, c=MNN, c=WW

Test 2 & 3

Trying to delete dn: should throw a PartialResultExceptioncn=alex karasulu, ou=people, c=MNN, c=WW

Test 4

We should be able to delete dn: o=MNN, c=WW

Test 5 & 7

Trying to delete dn: should throw a ReferralExceptionou=people, c=MNN, c=WW

Test 6 & 8

We should be able to delete dn: ou=people, c=MNN, c=WW

Compare Operation handling

test target
exists

is a
referral

has an
ancestor

JNDI/Core
handling

Description

1 no irrelevant no Irrelevant Returns a NoSuchObject exception

2 yes JNDI+throw Returns a PartialResult exception

 JNDI+ignore Throws a LdapReferralException
exception

3 Core API Returns a PartialResult exception

 Core API+ManageDsaIT Throws a LdapReferralException
exception

4 yes no no Irrelevant Returns the comparison result

5 yes no JNDI+throw Throws a LdapReferralException exception

6 JNDI+ignore Returns the comparison result

7 CoreAPI Throws a LdapReferralException exception

8 Core API+ManageDsaIT Returns the comparison result

test 1

Doing a compare on attribute for should fail with a NoSuchObject exceptionObjectclass cn=not present, c=MNN, c=WW

test 2 & 3

Doing a compare on attribute for should throw a PartialResultexceptionObjectclass cn=alex karasulu, ou=people, c=MNN, c=WW

test 4

Doing a compare on attribute for should return a successObjectclass c=MNN, c=WW

test 5 & 7

Doing a compare on attribute for should throw a ReferralExceptionObjectclass ou=people, c=MNN, c=WW

test 6 & 8

Doing a compare on attribute for should should return a successObjectclass ou=people, c=MNN, c=WW

Modify Operation handling

test Target
exists

is a
referral

has an
ancestor

JNDI/Protocol
handling

Description

1 no irrelevant no irrelevent Throws a NoSuchObject exception

2 yes JNDI+throw Throws a PartialResultException

 JNDI+ignore Throws a LdapReferralException
exception

3 Core API Throws a PartialResultException

 Core API+ManageDsaIT Throws a LdapReferralException
exception

4 yes no no irrelevant Modify the entry on the server

5 yes no JNDI+throw Throws a LdapReferralException

6 JNDI+ignore Modify the referral on the server

7 Core API Throws a LdapReferralException exception

8 Core API+ManageDsaIT Modify the referral on the server

Test 1

Doing a modify on should fail with a NoSuchObjectExceptioncn=not present, c=MNN, c=WW

Test 2 & 3

Doing a modify on should throw a LdapPartialResult exceptioncn=alex karasulu, ou=people, c=MNN, c=WW

Test 4

Doing a modify on should modify the entry on the serverc=MNN, c=WW

Test 5 & 7

Doing a modify on should throw a LdapReferral exceptionou=people, c=MNN, c=WW

Test 6 & 8

Doing a modify on should modify the referral on the serverou=people, c=MNN, c=WW

ModifyDN Operation handling

The ModifyDN operation is slightly more complicated, as we may change two things which might affect the operation :

- the new DN (it's a rename)

- the new Superior (it's a move)

And we can combine those two modifications (it's a move and rename).

One more important thing : the RFC states that :

RFC 3296 Section 5.6.2

If the newSuperior is a referral object or is subordinate to a
 referral object, the server SHOULD return affectsMultipleDSAs. If
 the newRDN already exists but is a referral object, the server SHOULD
 return affectsMultipleDSAs instead of entryAlreadyExists.

We will analyze those three kind of modifications separately.

Rename operation

test Entry
exists

New RDN
exists

is a
referral

has an
ancestor

JNDI/Protocol
handling

Description

1 no irrelevant irrelevant no irrelevent Throws a NameNotFoundException exception

2 yes JNDI+throw Throws a ReferralException

3 JNDI+ignore Throws a PartialResultException

4 Core API Throws a ReferralException

5 Core API+ManageDsaIT Throws a PartialResultException

6 yes no no irrelevant irrelevant Renames the entry on the server

7 yes no JNDI+throw Throws a ReferralException

8 JNDI+ignore Renames the referral on the server

9 Core API Throws a ReferralException

10 Core API+ManageDsaIT Renames the referral on the server

11 yes no irrelevant irrelevant Throws a
NameAlreadyBoundException exception

12 yes irrelevant JNDI+throw Throws a ReferralException

13 JNDI+ignore Throws a
NameAlreadyBoundException exception

14 Core API Throws a ReferralException

15 Core API+ManageDsaIT Throws a
NameAlreadyBoundException exception

Test 1

Renaming to on should fail with a NameNotFoundExceptioncn=not present, c=MNN, c=WW cn=akarasulu, c=MNN, c=WW

Test 2 & 4

Renaming to should throw a ReferralException exceptioncn=not present, ou=people, c=MNN, c=WW cn=new name, ou=people, c=MNN, c=WW

Test 3 & 5

Renaming to should throw a LdapPartialResult exceptioncn=not present, ou=people, c=MNN, c=WW cn=new name, ou=people, c=MNN, c=WW

Test 6

Renaming to should rename the entry on the servercn=Alex Karasulu, c=MNN, o=WW cn=Alex, c=MNN, o=WW

Test 7 & 9

Renaming to should throw a LdapReferral exceptionou=people, c=MNN, c=WW cn=new name, c=MNN, c=WW

Test 8 & 10

Renaming to shouldrename the referral on the serverou=people, c=MNN, c=WW cn=new name, c=MNN, c=WW

Test 11

Renaming to should throw a NameAlreadyBoundException exception ou=Alex Karasulu, c=MNN, c=WW cn=Emmanuel Lecharny, c=MNN, c=WW
(both entry already exist)

Test 12 & 14

Renaming to should throw a ReferralExceptionou=people, c=MNN, c=WW ou=roles, c=MNN, c=WW

Test 13 & 15

Renaming to should throw a NameAlreadyBoundExceptionou=people, c=MNN, c=WW ou=roles, c=MNN, c=WW

Move operation

It's a bit different than the rename operation, as we may have an existing new superior, but with a non existing combinaison of the oldRDN + new superior.

test OldSuperior
exists

OldSuperior
has an
ancestor

OldSuperior
is a referral

New
superior
exists

NewSuperior
is a referral

NewSuperior
has an
ancestor

JNDI/Protocol
handling

Description

1 no no irrelevant irrelevant irrelevant irrelevant irrelevent Throws a NameNotFoundException
exception

2 yes irrelevant irrelevant irrelevant irrelevant JND+throw Throws a ReferralException exception

3 JNDI+ignore Throws a PartialResult exception

4 Core API Throws a ReferralException exception

5 Core
API+ManageDsaIT

Throws a PartialResult exception

6 yes no no no no no irrelevent Move the branch Handle inner referrals

7 yes no yes irrelevant Returns a AffectMultipleDsasresult

8 yes irrelevant irrelevant Returns a AffectMultipleDsasresult

9 yes irrelevant irrelevant irrelevant JND+throw Throws a ReferralException exception

10 JNDI+ignore Throws a PartialResult exception

11 Core API Throws a ReferralException exception

12 Core
API+ManageDsaIT

Throws a PartialResult exception

Test 1

Moving to on should fail with a NameNotFoundExceptionc=MNN, cn=not present c=MNN, c=XX

Test 2 & 4

Moving to should throw a cn=Emmanuel Lecharny, ou=apache, ou=People, c=MNN, c=WW cn=Emmanuel Lecharny, ou=apache, ou=org
ReferralException exception.

Test 3 & 5

Moving to should throw a cn=alex karasulu, ou=apache, ou=people, c=MNN, c=WW cn=alex karasulu, ou=asf, ou=people, c=MNN, c=WW
PartialResultException exception.

Test 6

Moving to should move the branch to it's new place, with all the children.cn=Alex Karasulu, c=MNN, c=WW cn=Alex Karasulu, c=MNN, c=XX

Test 7

Moving to should throw a AffetcsMultipleDSAs result.cn=Alex, c=MNN, c=WW cn=Alex, ou=people, c=MNN, c=WW

Test 8

 Moving to should throw a AffetcsMultipleDSAs result.cn=Alex, c=MNN, c=WW cn=Alex, ou=apache, ou=people, c=MNN, c=WW

Test 9 & 11

Moving to should throw a ReferralException exception.cn=Alex, ou=apache, ou=people c=MNN, c=WW cn=Alex, ou=people, c=MNN, c=WW

Test 10 & 12

Moving to should throw a PartialResult exception.cn=Alex,ou=apache, ou=people, c=MNN, c=WW cn=Alex, c=not present

Move and rename operation

test Old
DN
exists

Old Superior
is a referral
or has an
ancestor

New
DN
exists

New Superior
is a referral
or has an
ancestor

JNDI/Core API Description

1 no no no irrelevant irrelevant Throws a NameNotFoundException exception

2 yes(has an ancestor) irrelevant irrelevant JNDI+throw Throws a ReferralException exception

3 JNDI+ignore Throws a PartialResult exception

4 Core API Throws a ReferralException exception

5 Core
API+ManageDsaIT

Throws a PartialResult exception

6 yes no no no irrelevant Moves and renames the entry, and the children

7 yes irrelevant Throws a AffectMultipleDsas

8 yes irrelevant irrelevant Throws an NameAlreadyBoundException
exception

9 yes (is a referral) irrelevant irrelevant JNDI+throw Throws a ReferralException exception

10 JNDI+ignore Throws a PartialResult exception

11 Core API Throws a ReferralException exception

12 Core
API+ManageDsaIT

Throws a PartialResult exception

Test 1

Trying to move and rename to whatever DN should throw a NameNotFoundException exceptionou=not present, o=MNN, c=WW

Test 2 & 4

Trying to move and rename to whatever DN should throw a ReferralException exceptioncn=alex karasulu, ou=apache, ou=people, o=MNN, c=WW

test 3 & 5

Trying to move and rename to whatever DN should throw a partialResultException exceptioncn=alex karasulu,ou=apache, ou=people, o=MNN, c=WW

test 6

Trying to move and rename to should move and rename the entrycn=alex karasulu,o=MNN, c=WW cn=Alex,o=PNN,c=WW

test 7

Trying to move and rename to should give a AffectsMultipleDSAs resultcn=alex karasulu,o=MNN, c=WW cn=Alex, ou=People, o=MNN, c=WW

test 8

Trying to move and rename to DN should throw a cn=Alex Karasulu,o=MNN, c=WW cn=Emmanuel Lecharny, o=PNN, c=WW
NameAlreadyBoundException exception

test 9 & 11

Trying to move and rename to should throw a ReferralException exceptioncn=Alex Karasulu,ou=People,c=MNN, c=WW cn=Alex, c=PNN, c=WW

test 10 & 12

Trying to move and rename to should throw a PartialResultException exceptioncn=Alex Karasulu,ou=People,c=MNN, c=WW cn=Alex, c=PNN, c=WW

Search Operation handling

test Target
exists

is a
referral

has an
ancestor

JNDI/Protocol
handling

Description

1 no no no irrelevant Throws a NameNotFoundException
exception

2 yes JNDI+throw Returns a ReferralException exception

3 JNDI+ignore Throws a PartialResultException

4 Core API Returns a SearchResultReference

5 Core API+ManageDsaIT Throws a PartialResultException

6 yes no irrelevant irrelevant Returns the search result

7 yes irrelevant JNDI+throw Returns a SearchResultReference

8 JNDI+ignore Returns the entry

9 Core API Returns a SearchResultReference

10 Core API+ManageDsaIT Returns the entry

Test 1

Searching for should return an empty resultcn=not present, c=WW

Test 2 & 4

Searching for should return a SearchResultReferencecn=alex karasulu, ou=apache, ou=people, c=MNN, c=WW

Test 3 & 5

Searching for should throw a Partial Result Exceptioncn=alex karasulu, ou=apache, ou=people, c=MNN, c=WW

Test 6

Searching for should return the entry.c=MNN, c=WW

Test 7 & 9

Searching for *ou=people, c=MNN, c=WW" should return a SearchResultReference

Test 8 & 10

Searching for *ou=people, c=MNN, c=WW" should return the entry.

Other technical considerations

case #1: Target is not a referral, has no ancestor which is a referraThe presence of the ManageDsaIT control is irrelevent.
 JNDI handlingAs the entry is not a referral, whatever value is set to the Context.REFERRAL property, the response will be the same : the server simply
returns the entry if it existsMINA provider handling

Without the ManageDsaIT control

When the target is a referral, the refs are returned back to the client with a resultCode of (example from RFC). If for example the client issues REFFERAL
a for the target of "OU=People,O=MNN,C=WW", the server will return the following when the control is present:modify ManageDsaIT NOT

Server Response

ModifyResponse (referral) {
 ldap://hostb/OU=People,DC=example,DC=com
 ldap://hostc/OU=People,O=MNN,C=WW
}

Referral Modifications

The ref attribute values be modified to exclude any scope, filter or attribute list from the URI if it is an LDAP URL. These search SHOULD
specific URL elements must be removed because the operation to be continued by chasing the referred are not be search operations.

Let's consider how the request is handled regarding to the two layers : MINA provider and JNDI provider.

JNDI handling

In this situation, without the control, the ApacheDS LDAP frontend (MINA provider) will set the value of the Context.REFFERAL property to "ManageDsaIT
" before issuing JNDI calls to the core. The JNDI operation on the ApacheDS JNDI DirContext will throw a ReferralException which shall contain throw

everything needed for the LDAP frontend to respond properly. This also allows, embedding applications to see the same results they would encounter from
the SUN JNDI LDAP Provider operating against a remote LDAP server.

Case #3: Target's parent is a referral

According to the RFC 3296 it appears as though the remaining name past the referral is appended to the DN of the ref attributes, if the values are LDAP
URLs. Also if they are LDAP URLs the scope, filter and attribute terms are removed. The result is returned back. To illustrate this let's consider the
example from the RFC where an add operation is performed with the target DN of "CN=Manager,OU=Roles,O=MNN,C=WW".

The dynamics of the add operation must be considered first WRT the ApacheDS JNDI provider. This operation can proceed in two ways. First via the
lookup of the parent context, "OU=Roles,O=MNN,C=WW", followed by a createSubcontext() operation on it using the RDN of the target entry. Other way
to perform the add operation is by looking up an ancestor context above the parent, "O=MNN,C=WW" for example, followed by a createSubcontext()
operation using a name fragment like "CN=Manager,OU=Roles". The last situation is not performed by the ApacheDS LDAP frontend but it can be
performed by an embedding application against the JNDI interfaces.

When the Context.REFERRAL environment property is not set (an implicit ignore) or is explicity set to the " " String, the createSubcontext() ignore
operation, regardless of what parent or ancestor it is issued upon will create the target entry under the referral parent. Remember when referrals are
ignored all referrals are processed as regular entries. The dynamics get interesting when the Context.REFFERAL property is set to " ". Incidentally throw
we will ignore the " " value for the property for the time being. In the first case where the createSubcontext() operation is performed on the parent, follow
which is the the referral entry "OU=Roles,O=MNN,C=WW", the attempt to create a non-existing child will succeed unless logic is put into place. The logic
must allow the Context implementation to detect the fact that it is a referral, and that the createSubcontext() operation being performed with the Context.
REFERRAL property set to " " must be prevented. BTW If an attempt is made to lookup the parent context with the Context.REFERRAL property set throw
to " " then a ReferralException will occur. So to get the parent we would have had to look it up with referral's ignored.throw

In the latter case, the createSubcontext() operation is being performed upon a (non-referral) ancestor with a name fragment for the target, "CN=Manager,
OU=Role". The context used to perform the operation does not care what mode the Context.REFERRAL property is set to since it is not a referral itself. It
will issue the add request against the nexus with the computed target DN. The only way to prevent incorrect creation of this entry, is to check through the
target's lineage for an ancestor that is a referral. If no ancestor up to the root suffix context is a referral then the operation may proceed. We cannot just
check if the parent is a referral because the parent may be a regular entry hidden under another referral: meaning the target's parent may have been
created while ignoring referrals. So we must exhaust the entire lineage or short the process when we find a parent or ancestor that is a referral. This must
happen within the JNDI provider when the Context.REFERRAL mode is set to " ".ignore

Case #4: Target's ancestor (not parent) is a referral

This is very similar to the latter half of case #3 above. When Context.REFERRAL=" ", The ApacheDS JNDI provider must test to see if any ancestors throw
of the target entry are referrals. The biggest difference here is in the processing of ref attribute value DN fields (if they are LDAP URLs). Here the
remaining name after the referral ancestor is tacked onto the DN components of the ref value. So if we were performing a createSubcontext() to add
"CN=OneDown,CN=Manager,OU=Role,O=MNN,C=WW", the ancestor "OU=Role,O=MNN,C=WW" is a referral. Now the parent "CN=Manager" may or
may not exist. Whether the parent exists or not we have to check for the presence of a referral ancestor before allowing the add operation to proceed.
Again the best place for this is within the JNDI provider. In this example the returned AddResponse would be:

AddResponse

AddResponse (referral) {
 ldap://hostd/CN=OneDown,CN=Manager,ou=Roles,dc=apache,dc=org
 }

Protocol Handlers

Since the LDAP protocol provider no longer sits on the JNDI Provider it no longer delegates checks for referrals to the JNDI provider. Each handler must
handle referral semantics as specified by the protocol where referrals are concerned. In most write based handlers this just means the handlers must
check if the target entry is a referral and issue the correct result codes and URIs.

Finding base of search operations

Here we discuss referral handling for finding the search base which is very similar to finding the targets of other operations. Unlike the other operations if
we encounter a referral while finding the search base we must add a search scope specifier to the ref if it's value is an LDAP URL. Also critical extensions
MUST NOT be trimmed nor modified.

"Review & update for 1.5 stopped here!!!"

~akarasulu

1.
2.
3.
4.

Another difference to calculating ref values is in factoring in alias dereferrencing. This is where things seem to get a little tricky but not really. Whether or
not the name for the discovered referral is an aliased name or the primary processing of the URL DN in ref values is the same. Only the remaining name,
the remaining part of the search base DN after the referral's DN, is needed and appended to the the DN of the URL in the ref value. Either it's easier in
ApacheDS because of the architecture or we're way oversimplifying this. Now let's review the cases for referral handling while finding the search base.

base is a normal entry ()default
base is a referral
base's parent is a referral
base's parent is or is not present, but an ancestor is a referral

Case #1 is the default case and will be skipped for consideration/elaboration.

Case #2: Same as for finding target entries with URL handling differences

An example is best for this case. We'll take the one in the RFC. If the client issues a subtree search in which the base object is "OU=Roles,O=MNN,
C=WW", the server will return:

SearchResultDone

SearchResultDone (referral) {
 ldap://hostd/ou=Roles,dc=apache,dc=org??sub
 }

Notice the extra subtree scope parameter tacked onto the URL.

Case #3: Same as for finding target entries with URL handling differences

Again an example is best for this case. We'll take the one in the RFC. If the client issues a base scoped search in which the base object is "CN=Manaager,
OU=Roles,O=MNN,C=WW", the server will return:

SearchResultDone

SearchResultDone (referral) {
 ldap://hostd/CN=Manager,ou=Roles,dc=apache,dc=org??base
 }

Notice the extra subtree scope parameter tacked onto the URL.

I won't elaborate on Case #4 since it's pretty much the same concept.

Back on track with search continuations

So for each referral within scope, we have to return a SearchResultReference using the URI compoents of the ref attribute. Here's what we have to do to
transform that URI:

If the URI component is not a LDAP URL, it should be
returned as is.
If the LDAP URL's DN part is absent or empty, the DN
part must be modified to contain the DN of the referral object.
If the URI component is a LDAP URL, the URI SHOULD be modified to
add an explicit scope specifier.

Subtree Example (From RFC 3296)

Subtree search of "O=MNN,C=WW" with filter (objectClass=*) might return:

Subtree Results

SearchEntry for O=MNN,C=WW
SearchResultReference {
 ldap://hostb/OU=People,DC=example,DC=com??sub
 ldap://hostc/OU=People,O=MNN,C=WW??sub
}
SearchEntry for CN=Manager,O=MNN,C=WW
SearchResultReference {
 ldap://hostd/OU=Roles,dc=apache,dc=org??sub
}
SearchResultDone (success)

One Level Example (From RFC 3296)

Same search but scope is one level on the same base:

Subtree Results

SearchResultReference {
 ldap://hostb/OU=People,DC=example,DC=com??sub
 ldap://hostc/OU=People,O=MNN,C=WW??sub
}
SearchEntry for CN=Manager,O=MNN,C=WW
SearchResultReference {
 ldap://hostd/OU=Roles,dc=apache,dc=org??sub
}
SearchResultDone (success)

Processing Considerations for Other Operations

Operations

We won't have to implement every operations in the interceptor : some of them are not necessary, like operations which do not modify the entries. For
instance, operation is not implemented.bind()

Here is the list of operations defined in the interface, and the list of operations we implement in (the missing methods are already ReferralInterceptor
implemented in the intermediate abstract class) :

Interface ReferralInterceptor

add

addContextPartitio
n

bind

compare

delete

destroy

Interface ReferralInterceptor

getMatchedNam
e

Smart Filter Alteration

If the filter contains an objectClass=* OR branch there is no point to altering it. Might want to look into a simple test for this before altering the
filter to add a new branch node and OR term. (objectClass=*) is common and it makes (objectClass=referral) redundant.

getRootDSE

getSuffix

hasEntry

init

Interface ReferralInterceptor

isSuffix

list

listSuffixes

lookup

modify

Interface ReferralInterceptor

modifyRn

move

removeContextPartitio
n

search

unbind

Conclusion
We will need to alter the ApacheDS JNDI provider, and the LDAP server frontend (MINA LDAP protocol provider) to handle referrals correctly. Here are the
changes required for each subsystem.

Changes to JNDI Provider

Add logic to check for parent and ancestor referrals when referral handling is not ignored
Throw the appropriate ReferralExceptions with ref modification with referral handling set to throw
Implement follow handling to chase referrals
Add special handling for search to properly modify referral LDAP URLs
Add code to alter the search operation when referral handling is not ignored
Create and add search result enumeration filter to collect referrals and save them for returning last after the underlying enumeration has been
exhausted of regular entries. This way we can return named continuation referrences last as JNDI LDAP providers are supposed to do.

Changes to MINA LDAP Frontend (Protocol Provider)

Make handlers set the Context.REFERRAL property approapriate (ignore or throw)
Make handlers correctly deal with ReferralExceptions for non-search operations
Handle search continuations properly

	Referral Handling Changes

