
File Language

File Expression Language

The File Expression Language is an extension to the language, adding file related capabilities. These capabilities are related to common use cases Simple
working with file path and names. The goal is to allow expressions to be used with the and components for setting dynamic file patterns for both File FTP
consumer and producer.

Syntax

This language is an to the language so the syntax applies also. So the table below only lists the additional. By contrast to the extension Simple Simple Sim
 language, the also supports the use of expressions to enter a fixed filename, for example.ple File Language Constant

All the file tokens use the same expression name as the method on the object. For example: refers to the java.io.File file:absolute java.io.
 method.File.getAbsolute()

Expression Type File
Consumer

File
Producer

FTP
Consumer

FTP
Producer

Description

date:command
:pattern

String yes yes yes yes For date formatting using the patterns java.text.SimpleDateFormat
which is an to the language.extension Simple

Additional command is: (consumers only) for the last modified file
timestamp of the file.

Note: all the commands from the language can also be used.Simple

file:
absolute

Boolean yes no no no Refers to whether the file is regarded as absolute or relative.

file:
absolute.
path

String yes no no no Refers to the absolute file path.

file:ext String yes no yes no Refers to the file extension only.

file:length Long yes no yes no Refers to the file length returned as a type.Long

file:
modified

Date yes no yes no Refers to the file last modified returned as a type.Date

file:name String yes no yes no Refers to the file name (is relative to the starting directory, see note below).

file:name.
ext

String yes no yes no Camel 2.3: refers to the file extension only.

file:name.
ext.single

String yes no yes no Camel 2.14.4/2.15.3: refers to the file extension. If the file extension has
multiple dots, then this expression strips and only returns the last part.

file:name.
noext

String yes no yes no Refers to the file name with no extension (is relative to the starting directory,
see note below).

file:name.
noext.
single

String yes no yes no Camel 2.14.4/2.15.3: refers to the file name with no extension (is relative to
. If the file extension has multiple dots, the starting directory, see note below)

then this expression strips only the last part, and keep the others.

file:
onlyname

String yes no yes no Refers to the file name only with no leading paths.

file:
onlyname.
noext

String yes no yes no Refers to the file name only with no extension and with no leading paths.

file:
onlyname.
noext.
single

String yes no yes no Camel 2.14.4/2.15.3: refers to the file name only with no extension and with
no leading paths. If the file extension has multiple dots, then this expression
strips only the last part, and keep the others.

file:parent String yes no yes no Refers to the file parent.

File language is now merged with Simple language

From : the file language is now merged with language which means you can use all the file syntax directly within the simple Camel 2.2 Simple
language.

Note: not all expressions are supported by the current Exchange. For example, the component supports some of the options, whereas the FTP
 component supports all of them.File

https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/FTP
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Constant
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/FTP
https://cwiki.apache.org/confluence/display/CAMEL/File2

file:path String yes no yes no Refers to the file path.

file:size Long yes no yes no Camel 2.5: refers to the file length returned as a type.Long

File Token Example

Relative Paths

We have a handle for the file in the following directory: . And we configure our endpoint to java.io.File hello.txt relative .\filelanguage\test
use this starting directory ..\filelanguage

The file tokens returned are:

Expression Returns

file:absolute false

file:absolute.path \workspace\camel\camel-core\target\filelanguage\test\hello.txt

file:ext txt

file:name test\hello.txt

file:name.ext txt

file:name.noext test\hello

file:onlyname hello.txt

file:onlyname.noext hello

file:parent filelanguage\test

file:path filelanguage\test\hello.txt

Absolute Paths

We have a handle for the file in the following directory: java.io.File hello.txt absolute \workspace\camel\camel-
. And we configure out endpoint to use the absolute starting directory: core\target\filelanguage\test \workspace\camel\camel-

.core\target\filelanguage

The file tokens return are:

Expression Returns

file:absolute true

file:absolute.path \workspace\camel\camel-core\target\filelanguage\test\hello.txt

file:ext txt

file:name test\hello.txt

file:name.ext txt

file:name.noext test\hello

file:onlyname hello.txt

file:onlyname.noext hello

file:parent \workspace\camel\camel-core\target\filelanguage\test

file:path \workspace\camel\camel-core\target\filelanguage\test\hello.txt

Examples

You can enter a fixed expression such as :Constant myfile.txt

fileName="myfile.txt"

Lets assume we use the file consumer to read files and want to move the read files to backup folder with the current date as a sub folder. This can be
achieved using an expression like:

https://cwiki.apache.org/confluence/display/CAMEL/Constant

fileName="backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

relative folder names are also supported so suppose the backup folder should be a sibling folder then you can append as:..

fileName="../backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

As this is an extension to the language we have access to all the goodies from this language also, so in this use case we want to use the Simple in.
 as a parameter in the dynamic expression:header.type

fileName="../backup/${date:now:yyyyMMdd}/type-${in.header.type}/backup-of-${file:name.noext}.bak"

If you have a custom you want to use in the expression then Camel supports retrieving dates from the message header.Date

fileName="orders/order-${in.header.customerId}-${date:in.header.orderDate:yyyyMMdd}.xml"

And finally we can also use a bean expression to invoke a POJO class that generates some output (or convertible to) to be used:String String

fileName="uniquefile-${bean:myguidgenerator.generateid}.txt"

And of course all this can be combined in one expression where you can use the , and the language in one combined File Language Simple Bean
expression. This is pretty powerful for those common file path patterns.

Using Spring's with the ComponentPropertyPlaceholderConfigurer File

In Camel you can use the directly from the language which makes a easier to do in Spring XML, where we File Language Simple Content Based Router
can route based on file extensions as shown below:

<from uri="file://input/orders"/>
 <choice>
 <when>
 <simple>${file:ext} == 'txt'</simple>
 <to uri="bean:orderService?method=handleTextFiles"/>
 </when>
 <when>
 <simple>${file:ext} == 'xml'</simple>
 <to uri="bean:orderService?method=handleXmlFiles"/>
 </when>
 <otherwise>
 <to uri="bean:orderService?method=handleOtherFiles"/>
 </otherwise>
 </choice>

If you use the option on the endpoint to set a dynamic filename using the then make sure you use the alternative syntax fileName File File Language
(available from Camel 2.5) to avoid clashing with Spring's .PropertyPlaceholderConfigurer

bundle-context.xml

<bean id="propertyPlaceholder" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="location" value="classpath:bundle-context.cfg"/>
</bean>

<bean id="sampleRoute" class="SampleRoute">
 <property name="fromEndpoint" value="${fromEndpoint}"/>
 <property name="toEndpoint" value="${toEndpoint}"/>
</bean>

https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/File2

bundle-context.cfg

fromEndpoint=activemq:queue:test
toEndpoint=file://fileRoute/out?fileName=test-$simple{date:now:yyyyMMdd}.txt

Notice how we use the syntax in the above. If you don't do this, they will clash and Spring will throw an exception:$simple{} toEndpoint

org.springframework.beans.factory.BeanDefinitionStoreException:
Invalid bean definition with name 'sampleRoute' defined in class path resource [bundle-context.xml]:
Could not resolve placeholder 'date:now:yyyyMMdd'

Dependencies

The File language is part of .camel-core

	File Language

