File Language

File Expression Language

@ File language is now merged with Simple language
From Camel 2.2: the file language is now merged with Simple language which means you can use all the file syntax directly within the simple
language.

The File Expression Language is an extension to the Simple language, adding file related capabilities. These capabilities are related to common use cases
working with file path and names. The goal is to allow expressions to be used with the File and FTP components for setting dynamic file patterns for both
consumer and producer.

Syntax

This language is an extension to the Simple language so the Simple syntax applies also. So the table below only lists the additional. By contrast to the Sim
ple language, the File Language also supports the use of Constant expressions to enter a fixed filename, for example.

All the file tokens use the same expression name as the method on the j ava. i 0. Fi | e object. For example: fi | e: absol ut e refers to the j ava. i o.

Fi | e. get Absol ut e() method.

Note: not all expressions are supported by the current Exchange. For example, the FTP component supports some of the options, whereas the
File component supports all of them.

Expression Type File File FTP FTP Description
Consumer Producer Consumer Producer
date: conmand String yes yes yes yes For date formatting using the j ava. t ext . Si npl eDat eFor nat patterns
tpattern which is an extension to the Simple language.

Additional command is: f i | e (consumers only) for the last modified
timestamp of the file.

Note: all the commands from the Simple language can also be used.

file: Bool ean yes no no no Refers to whether the file is regarded as absolute or relative.

absol ute

file: String vyes no no no Refers to the absolute file path.

absol ute.

pat h

file:ext String yes no yes no Refers to the file extension only.

file:length ' Long yes no yes no Refers to the file length returned as a Long type.

file: Dat e yes no yes no Refers to the file last modified returned as a Dat e type.

nodi fi ed

file:nane String vyes no yes no Refers to the file name (is relative to the starting directory, see note below).
file:nane. String yes no yes no Camel 2.3: refers to the file extension only.

ext

file:nane. String vyes no yes no Camel 2.14.4/2.15.3: refers to the file extension. If the file extension has
ext.single multiple dots, then this expression strips and only returns the last part.
file:nane. String yes no yes no Refers to the file name with no extension (is relative to the starting directory,
noext see note below).

file:nane. String yes no yes no Camel 2.14.4/2.15.3: refers to the file name with no extension (is relative to
noext . the starting directory, see note below). If the file extension has multiple dots,
single then this expression strips only the last part, and keep the others.

file: String yes no yes no Refers to the file name only with no leading paths.

onl ynane

file: String yes no yes no Refers to the file name only with no extension and with no leading paths.
onl ynane.

noext

file: String vyes no yes no Camel 2.14.4/2.15.3: refers to the file name only with no extension and with
onl ynane. no leading paths. If the file extension has multiple dots, then this expression
noext . strips only the last part, and keep the others.

single

file:parent String yes no yes no Refers to the file parent.

https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/FTP
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Constant
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/FTP
https://cwiki.apache.org/confluence/display/CAMEL/File2

file:path String yes no yes no Refers to the file path.

file:size Long yes no yes no Camel 2.5: refers to the file length returned as a Long type.

File Token Example

Relative Paths

We have aj ava. i o. Fi | e handle for the file hel | 0. t xt in the following relative directory: . \ fi | el anguage\t est . And we configure our endpoint to
use this starting directory . \ f i | el anguage.

The file tokens returned are:

Expression Returns
file:absolute fal se

file:absolute.path ' \workspace\canel\canel-core\target\filel anguage\test\hello.txt

file:ext t xt

file:name test\hello.txt
file:nane. ext t xt

file: nane. noext test\hello
file:onlyname hel I o. t xt

file:onlyname. noext hello
file:parent fil el anguage\test

file:path filelanguage\test\hello.txt

Absolute Paths

We have a j ava. i 0. Fi | e handle for the file hel | 0. t xt in the following absolute directory: \ wor kspace\ canel \ canel -
core\target\fil el anguage\t est. And we configure out endpoint to use the absolute starting directory: \ wor kspace\ canel \ canel -
core\target\fil el anguage.

The file tokens return are:

Expression Returns
file:absolute true

file:absolute.path ' \workspace\canel\canel-core\target\filelanguage\test\hello.txt

file:ext txt

file:nane test\hello.txt
file:nane. ext t xt

file: nane. noext test\hello
file:onlyname hel I o. t xt

file:onlyname. noext hello

file:parent \wor kspace\ canel \ canel -core\target\fil el anguage\t est
file:path \wor kspace\ canel \ canel -core\target\fil el anguage\test\hello.txt
Examples

You can enter a fixed Constant expression such as nyfile. t xt:

fileName="nyfile.txt"

Lets assume we use the file consumer to read files and want to move the read files to backup folder with the current date as a sub folder. This can be
achieved using an expression like:

https://cwiki.apache.org/confluence/display/CAMEL/Constant

fil eName="backup/ ${ dat e: now. yyyyMwdd}/ ${fi | e: nane. noext }. bak"

relative folder names are also supported so suppose the backup folder should be a sibling folder then you can append . . as:

fileName="../backup/ ${date: now. yyyyMwdd}/ ${fi | e: nane. noext }. bak"

As this is an extension to the Simple language we have access to all the goodies from this language also, so in this use case we want to use the i n.
header . t ype as a parameter in the dynamic expression:

fileName="../backup/ ${dat e: now yyyyMwd}/type-${i n. header. type}/ backup-of - ${fi |l e: nane. noext}. bak"

If you have a custom Dat e you want to use in the expression then Camel supports retrieving dates from the message header.

fil eName="orders/ order-${in.header.customer|d}-${date:in. header. orderDate:yyyyMmwd}.xm "

And finally we can also use a bean expression to invoke a POJO class that generates some St r i ng output (or convertible to St ri ng) to be used:

fileName="uni quefil e- ${bean: nygui dgener at or. generatei d}.txt"

And of course all this can be combined in one expression where you can use the File Language, Simple and the Bean language in one combined
expression. This is pretty powerful for those common file path patterns.

Using Spring's Propert yPl acehol der Conf i gur er with the File Component

In Camel you can use the File Language directly from the Simple language which makes a Content Based Router easier to do in Spring XML, where we
can route based on file extensions as shown below:

<fromuri="file://input/orders"/>
<choi ce>
<when>
<sinmple>${file:ext} == 'txt'</sinple>
<t o uri="bean: order Servi ce?met hod=handl eText Fi | es"/ >
</ when>
<when>
<sinple>${file:ext} == "'xm"'</sinple>
<to uri="bean: order Servi ce?nmet hod=handl eXnl Fi | es"/ >
</ when>
<ot her wi se>
<to uri="bean: order Servi ce?rmet hod=handl e her Fi | es"/ >
</ ot herw se>
</ choi ce>

If you use the f i | eNane option on the File endpoint to set a dynamic filename using the File Language then make sure you use the alternative syntax
(available from Camel 2.5) to avoid clashing with Spring's Pr oper t yPl acehol der Confi gurer.

bundle-context.xml

<bean i d="propertyPl acehol der" cl ass="org. spri ngfranmework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property nanme="| ocation" val ue="cl asspat h: bundl e-context.cfg"/>
</ bean>

<bean i d="sanpl eRout e" cl ass="Sanpl eRout e" >
<property nanme="fronmEndpoi nt" val ue="${fronEndpoint}"/>
<property nanme="toEndpoi nt" val ue="${toEndpoint}"/>

</ bean>

https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/File2

bundle-context.cfg

f ronEndpoi nt =act i veng: queue: t est
toEndpoi nt=file://fileRoute/out?fileNane=test-$sinpl e{dat e: now yyyyMwdd} . t xt

Notice how we use the $si npl e{} syntax in the t oEndpoi nt above. If you don't do this, they will clash and Spring will throw an exception:
org. spri ngframewor k. beans. fact ory. BeanDef i ni ti onSt or eExcepti on:

Invalid bean definition with name 'sanpl eRoute' defined in class path resource [bundle-context.xm]:
Coul d not resol ve pl acehol der 'date: now yyyymMwd'

Dependencies

The File language is part of canel - cor e.

	File Language

