
Mail

Mail Component

The mail component provides access to Email via Spring's Mail support and the underlying JavaMail system.

Maven users will need to add the following dependency to their for this component:pom.xml

xml<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-mail</artifactId> <version>x.x.x</version> <!-- use the same version as your
Camel core version --> </dependency> Geronimo mail .jar
We have discovered that the geronimo mail (v1.6) has a bug when polling mails with attachments. It cannot correctly identify the . .jar Content-Type
So, if you attach a file to a mail and you poll it, the is resolved as and not as . For that reason, we have .jpeg Content-Type text/plain image/jpeg
added an SPI interface which enables you to provide your own implementation and fix this org.apache.camel.component.ContentTypeResolver
bug by returning the correct Mime type based on the file name. So if the file name ends with , you can return .jpeg/jpg image/jpeg

You can set your custom resolver on the instance or on the instance.MailComponent MailEndpoint
POP3 or IMAP
POP3 has some limitations and end users are encouraged to use IMAP if possible.
Using mock-mail for testing
You can use a mock framework for unit testing, which allows you to test without the need for a real mail server. However you should remember to not
include the mock-mail when you go into production or other environments where you need to send mails to a real mail server. Just the presence of the
mock-javamail.jar on the classpath means that it will kick in and avoid sending the mails.

URI format

Mail endpoints can have one of the following URI formats (for the protocols, SMTP, POP3, or IMAP, respectively):

smtp://[username@]host[:port][?options] pop3://[username@]host[:port][?options] imap://[username@]host[:port][?options]

The mail component also supports secure variants of these protocols (layered over SSL). You can enable the secure protocols by adding to the scheme:s

smtps://[username@]host[:port][?options] pop3s://[username@]host[:port][?options] imaps://[username@]host[:port][?options]

You can append query options to the URI in the following format, ?option=value&option=value&...

Sample endpoints

Typically, you specify a URI with login credentials as follows (taking SMTP as an example):

smtp://[username@]host[:port][?password=somepwd]

Alternatively, it is possible to specify both the user name and the password as query options:

smtp://host[:port]?password=somepwd&username=someuser

For example:

smtp://mycompany.mailserver:30?password=tiger&username=scott

DefaultPortsDefault ports

Default port numbers are supported. If the port number is omitted, Camel determines the port number to use based on the protocol.

confluenceTableSmall

Protocol Default Port Number

SMTP 25

SMTPS 465

POP3 110

POP3S 995

IMAP 143

IMAPS 993

Options
confluenceTableSmall

Property Default Description

host The host name or IP address to connect to.

port See #Def
aultPorts

The TCP port number to connect on.

username The user name on the email server.

password null The password on the email server.

ignoreUr
iScheme

false If , Camel uses the scheme to determine the transport protocol (POP, IMAP, SMTP etc.)false

contentT
ype

text
/plain

The mail message content type. Use for HTML mails.text/html

folderNa
me

INBOX The folder to poll.

destinat
ion

usernam
e@host

@deprecated Use the option instead. The recipients (receivers of the email).to TO

to usernam
e@host

The TO recipients (the receivers of the mail). Separate multiple email addresses with a comma. Email addresses containing
special characters such as "&" will need to be handled differently - see How do I configure password options on Camel

.endpoints without the value being encoded

replyTo alias@h
ost

As of , the Reply-To recipients (the receivers of the response mail). Separate multiple email addresses Camel 2.8.4, 2.9.1+
with a comma.

cc null The CC recipients (the receivers of the mail). Separate multiple email addresses with a comma.

bcc null The BCC recipients (the receivers of the mail). Separate multiple email addresses with a comma.

from camel@l
ocalhost

The FROM email address.

subject As of , the Subject of the message being sent. Note: Setting the subject in the header takes precedence over this Camel 2.3
option.

peek true Camel 2.11.3/2.12.2: Consumer only. Will mark the as peeked before processing the mail message. javax.mail.Message
This applies to messages types only. By using peek the mail will not be eager marked as on the mail IMAPMessage SEEN
server, which allows us to rollback the mail message if there is an error processing in Camel.

delete false Deletes the messages after they have been processed. This is done by setting the flag on the mail message. If DELETED fal
, the flag is set instead. As of you can override this configuration option by setting a header with the key se SEEN Camel 2.10 d

 to determine if the mail should be deleted or not.elete

unseen true It is possible to configure a consumer endpoint so that it processes only unseen messages (that is, new messages) or all
messages. Note that Camel always skips deleted messages. The default option of will filter to only unseen messages. true
POP3 does not support the flag, so this option is not supported in POP3; use IMAP instead. This option is SEEN Important: n

 in use if you also use options. Instead if you want to disable unseen when using 's then add ot searchTerm searchTerm sea
 as a term.rchTerm.unseen=false

copyTo null Camel 2.10: Consumer only. After processing a mail message, it can be copied to a mail folder with the given name. You can
override this configuration value, with a header with the key , allowing you to copy messages to folder names copyTo
configured at runtime.

fetchSize -1 Sets the maximum number of messages to consume during a poll. This can be used to avoid overloading a mail server, if a
mailbox folder contains a lot of messages. Default value of means no fetch size and all messages will be consumed. -1
Setting the value to 0 is a special corner case, where Camel will not consume any messages at all.

alternat
iveBodyH
eader

CamelMa
ilAlter
nativeB
ody

Specifies the key to an IN message header that contains an alternative email body. For example, if you send emails in text
 format and want to provide an alternative mail body for non-HTML email clients, set the alternative mail body with this /html

key as a header.

debugMode false Enable debug mode on the underlying mail framework. The SUN Mail framework logs the debug messages to System.out
by default.

connecti
onTimeout

30000 The connection timeout in milliseconds. Default is 30 seconds.

consumer
.
initialD
elay

1000 Milliseconds before the polling starts.

consumer
.delay

60000 Camel will poll the mailbox only once a minute by default to avoid overloading the mail server.

https://cwiki.apache.org/confluence/display/CAMEL/How+do+I+configure+password+options+on+Camel+endpoints+without+the+value+being+encoded
https://cwiki.apache.org/confluence/display/CAMEL/How+do+I+configure+password+options+on+Camel+endpoints+without+the+value+being+encoded

consumer
.
useFixed
Delay

false Set to to use a fixed delay between polls, otherwise fixed rate is used. See in JDK for true ScheduledExecutorService
details.

disconne
ct

false Camel 2.8.3/2.9: Whether the consumer should disconnect after polling. If enabled this forces Camel to connect on each poll.

closeFol
der

true Camel 2.10.4: Whether the consumer should close the folder after polling. Setting this option to and having false disconne
 as well, then the consumer keep the folder open between polls.ct=false

mail.XXX null Set any . For instance if you want to set a special property when using POP3 you can now additional java mail properties
provide the option directly in the URI such as: . You can set multiple such options, mail.pop3.forgettopheaders=true
for example: .mail.pop3.forgettopheaders=true&mail.mime.encodefilename=true

mapMailM
essage

true Camel 2.8: Specifies whether Camel should map the received mail message to Camel body/headers. If set to true, the body
of the mail message is mapped to the body of the Camel IN message and the mail headers are mapped to IN headers. If this
option is set to false then the IN message contains a raw . You can retrieve this raw message by javax.mail.Message
calling .exchange.getIn().getBody(javax.mail.Message.class)

maxMessa
gesPerPo
ll

0 Specifies the maximum number of messages to gather per poll. By default, no maximum is set. Can be used to set a limit of e.
g. 1000 to avoid downloading thousands of files when the server starts up. Set a value of 0 or negative to disable this option.

javaMail
Sender

null Specifies a pluggable instance in order to use a custom email org.apache.camel.component.mail.JavaMailSender
implementation.

ignoreUn
supporte
dCharset

false Option to let Camel ignore unsupported charset in the local JVM when sending mails. If the charset is unsupported then char
 (where represents the unsupported charset) is removed from the and it relies on the platform set=XXX XXX content-type

default instead.

sslConte
xtParame
ters

null Camel 2.10: Reference to a in the . This reference org.apache.camel.util.jsse.SSLContextParameters Registry
overrides any configured SSLContextParameters at the component level. See .Using the JSSE Configuration Utility

searchTe
rm

null Camel 2.11: Refers to a which allows to filter mails based on search criteria such as javax.mail.search.SearchTerm
subject, body, from, sent after a certain date etc. See further below for examples.

searchTe
rm.xxx

null Camel 2.11: To configure search terms directly from the endpoint uri, which supports a limited number of terms defined by
the class. See further below for examples.org.apache.camel.component.mail.SimpleSearchTerm

sortTerm null Camel 2.15: To configure the sortTerms that supports to sort the searched mails You may need to define an array ofIMAP .

com.sun.mail.imap.sortTerm in the registry first and #name to reference it in this URI option.

Camel 2.16: You can also specify a comma separated list of sort terms on the URI that Camel will convert internally. For
example, to sort descending by date you would use . You can use any of the sort terms defined sortTerm=reverse,date
in .com.sun.mail.imap.SortTerm

postProc
essAction

null Camel 2.15: Refers to aorg.apache.camel.component.mail. for doing post MailBoxPostProcessAction

processing tasks on the mailbox once the normal processing ended.

skipFail
edMessage

false Camel 2.15.1: If the mail consumer cannot retrieve a given mail message, then this option allows to skip the message and
move on to retrieve the next mail message. The default behavior would be the consumer throws an exception and no mails
from the batch would be able to be routed by Camel.

handleFa
iledMess
age

false Camel 2.15.1: If the mail consumer cannot retrieve a given mail message, then this option allows to handle the caused
exception by the consumer's error handler. By enable the bridge error handler on the consumer, then the Camel routing error
handler can handle the exception instead. The default behavior would be the consumer throws an exception and no mails
from the batch would be able to be routed by Camel.

dummyTru
stManager

false Camel 2.17:To use a dummy security setting for trusting all certificates. Should only be used for development mode, and not
production.

idempote
ntReposi
tory

null Camel 2.17: A pluggable repository org.apache.camel.spi.IdempotentRepository which allows to cluster consuming from the
same mailbox, and let the repository coordinate whether a mail message is valid for the consumer to process.

idempote
ntReposi
toryRemo
veOnComm
it

true Camel 2.17: When using idempotent repository, then when the mail message has been successfully processed and is
committed, should the message id be removed from the idempotent repository (default) or be kept in the repository. By default
its assumed the message id is unique and has no value to be kept in the repository, because the mail message will be
marked as seen/moved or deleted to prevent it from being consumed again. And therefore having the message id stored in
the idempotent repository has little value. However this option allows to store the message id, for whatever reason you may
have.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/products/javamail/javadocs/index.html
http://camel.apache.org/registry.html
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
https://javamail.java.net/nonav/docs/api/com/sun/mail/imap/SortTerm.html

mailUidG
enerator

 Camel 2.17: A pluggable MailUidGenerator that allows to use custom logic to generate UUID of the mail message.

SSL support

The underlying mail framework is responsible for providing SSL support. You may either configure SSL/TLS support by completely specifying the
necessary Java Mail API configuration options, or you may provide a configured SSLContextParameters through the component or endpoint configuration.

Using the JSSE Configuration Utility

As of , the mail component supports SSL/TLS configuration through the . This utility greatly decreases the Camel 2.10 Camel JSSE Configuration Utility
amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how
to use the utility with the mail component.

Programmatic configuration of the endpoint
KeyStoreParameters ksp = new KeyStoreParameters(); ksp.setResource("/users/home/server/truststore.jks"); ksp.setPassword("keystorePassword");
TrustManagersParameters tmp = new TrustManagersParameters(); tmp.setKeyStore(ksp); SSLContextParameters scp = new SSLContextParameters();
scp.setTrustManagers(tmp); Registry registry = ... registry.bind("sslContextParameters", scp); ... from(...) .to("smtps://smtp.google.com?
username=user@gmail.com&password=password&sslContextParameters=#sslContextParameters");

Spring DSL based configuration of endpoint
xml... <camel:sslContextParameters id="sslContextParameters"> <camel:trustManagers> <camel:keyStore resource="/users/home/server/truststore.jks"
password="keystorePassword"/> </camel:trustManagers> </camel:sslContextParameters>... ... <to uri="smtps://smtp.google.com?username=user@gmail.
com&password=password&sslContextParameters=#sslContextParameters"/>...

Configuring JavaMail Directly

Camel uses SUN JavaMail, which only trusts certificates issued by well known Certificate Authorities (the default JVM trust configuration). If you issue your
own certificates, you have to import the CA certificates into the JVM's Java trust/key store files, override the default JVM trust/key store files (see SSLNOTE

 in JavaMail for details).S.txt

Mail Message Content

Camel uses the message exchange's IN body as the text content. The body is converted to .MimeMessage String.class

Camel copies all of the exchange's IN headers to the headers. You may wish to read MimeMessage How to avoid sending some or all message headers
to prevent inadvertent data "leaks" from your application.

The subject of the can be configured using a header property on the IN message. The code below demonstrates this:MimeMessage {snippet:
The same applies for other id=e1|lang=java|url=camel/trunk/components/camel-mail/src/test/java/org/apache/camel/component/mail/MailSubjectTest.java}

MimeMessage headers such as recipients, so you can use a header property as :To {snippet:id=e1|lang=java|url=camel/trunk/components/camel-mail/src
 When using the MailProducer the send the mail to server, you /test/java/org/apache/camel/component/mail/MailUsingHeadersTest.java}Since Camel 2.11

should be able to get the message id of the with the key from the Camel message header.MimeMessage CamelMailMessageId

Headers take precedence over pre-configured recipients

The recipients specified in the message headers always take precedence over recipients pre-configured in the endpoint URI. The idea is that if you provide
any recipients in the message headers, that is what you get. The recipients pre-configured in the endpoint URI are treated as a fallback.

In the sample code below, the email message is sent to , because it takes precedence over the pre-configured recipient, davsclaus@apache.org info@
. Any and settings in the endpoint URI are also ignored and those recipients will not receive any mail. The choice between mycompany.com cc bcc

headers and pre-configured settings is all or nothing: the mail component takes the recipients exclusively from the headers or exclusively from the either
pre-configured settings. It is not possible to mix and match headers and pre-configured settings.

java Map<String, Object> headers = new HashMap<String, Object>(); headers.put("to", "davsclaus@apache.org"); template.sendBodyAndHeaders
("smtp://admin@localhost?to=info@mycompany.com", "Hello World", headers);

Multiple recipients for easier configuration

It is possible to set multiple recipients using a comma-separated or a semicolon-separated list. This applies both to header settings and to settings in an
endpoint URI. For example:

java Map<String, Object> headers = new HashMap<String, Object>(); headers.put("to", "davsclaus@apache.org ; jstrachan@apache.org ;
ningjiang@apache.org");

The preceding example uses a semicolon, , as the separator character.;

Setting sender name and email

You can specify recipients in the format, , to include both the name and the email address of the recipient.name <email>

For example, you define the following headers on the a :Message

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Configuration+Utilities
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
https://cwiki.apache.org/confluence/display/CAMEL/How+to+avoid+sending+some+or+all+message+headers
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
https://cwiki.apache.org/confluence/display/CAMEL/Message

Map headers = new HashMap(); map.put("To", "Claus Ibsen <davsclaus@apache.org>"); map.put("From", "James Strachan <jstrachan@apache.org>");
map.put("Subject", "Camel is cool");

JavaMail API (ex SUN JavaMail)

JavaMail API is used under the hood for consuming and producing mails.
We encourage end-users to consult these references when using either POP3 or IMAP protocol. Note particularly that POP3 has a much more limited set
of features than IMAP.

JavaMail POP3 API
JavaMail IMAP API
And generally about the MAIL Flags

Samples

We start with a simple route that sends the messages received from a JMS queue as emails. The email account is the account on admin mymailserver.
.com

from("jms://queue:subscription").to("smtp://admin@mymailserver.com?password=secret");

In the next sample, we poll a mailbox for new emails once every minute. Notice that we use the special option for setting the poll interval, consumer consu
, as 60000 milliseconds = 60 seconds.mer.delay

from("imap://admin@mymailserver.com password=secret&unseen=true&consumer.delay=60000") .to("seda://mails");

In this sample we want to send a mail to multiple recipients:{snippet:id=e1|lang=java|url=camel/trunk/components/camel-mail/src/test/java/org/apache
/camel/component/mail/MailRecipientsTest.java}

Sending mail with attachment sample
Attachments are not support by all Camel components
The is based on the Java Activation Framework and is generally only used by the Mail API. Since many of the other Camel components Attachments API
do not support attachments, the attachments could potentially be lost as they propagate along the route. The rule of thumb, therefore, is to add
attachments just before sending a message to the mail endpoint.

The mail component supports attachments. In the sample below, we send a mail message containing a plain text message with a logo file attachment.{snip
pet:id=e1|lang=java|url=camel/trunk/components/camel-mail/src/test/java/org/apache/camel/component/mail/MailAttachmentTest.java}

SSL sample

In this sample, we want to poll our Google mail inbox for mails. To download mail onto a local mail client, Google mail requires you to enable and configure
SSL. This is done by logging into your Google mail account and changing your settings to allow IMAP access. Google have extensive documentation on
how to do this.

from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD" + "&delete=false&unseen=true&consumer.
delay=60000").to("log:newmail");

The preceding route polls the Google mail inbox for new mails once every minute and logs the received messages to the logger category.newmail
Running the sample with logging enabled, we can monitor the progress in the logs:DEBUG

2008-05-08 06:32:09,640 DEBUG MailConsumer - Connecting to MailStore imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX 2008-05-08 06:32:
11,203 DEBUG MailConsumer - Polling mailfolder: imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX 2008-05-08 06:32:11,640 DEBUG
MailConsumer - Fetching 1 messages. Total 1 messages. 2008-05-08 06:32:12,171 DEBUG MailConsumer - Processing message: messageNumber=
[332], from=[James Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[... 2008-05-08 06:32:12,187 INFO newmail - Exchange
[MailMessage: messageNumber=[332], from=[James Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...

Consuming mails with attachment sample

In this sample we poll a mailbox and store all attachments from the mails as files. First, we define a route to poll the mailbox. As this sample is based on
google mail, it uses the same route as shown in the SSL sample:

from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD" + "&delete=false&unseen=true&consumer.
delay=60000").process(new MyMailProcessor());

Instead of logging the mail we use a processor where we can process the mail from java code:

public void process(Exchange exchange) throws Exception { // the API is a bit clunky so we need to loop Map<String, DataHandler> attachments =
exchange.getIn().getAttachments(); if (attachments.size() > 0) { for (String name : attachments.keySet()) { DataHandler dh = attachments.get(name); // get
the file name String filename = dh.getName(); // get the content and convert it to byte[] byte[] data = exchange.getContext().getTypeConverter() .convertTo
(byte[].class, dh.getInputStream()); // write the data to a file FileOutputStream out = new FileOutputStream(filename); out.write(data); out.flush(); out.
close(); } } }

As you can see the API to handle attachments is a bit clunky but it's there so you can get the so you can handle the javax.activation.DataHandler
attachments using standard API.

How to split a mail message with attachments

https://java.net/projects/javamail/pages/Home
https://javamail.java.net/nonav/docs/api/com/sun/mail/pop3/package-summary.html
https://javamail.java.net/nonav/docs/api/com/sun/mail/imap/package-summary.html
https://javamail.java.net/nonav/docs/api/javax/mail/Flags.html

In this example we consume mail messages which may have a number of attachments. What we want to do is to use the EIP per individual Splitter
attachment, to process the attachments separately. For example if the mail message has 5 attachments, we want the to process five messages, Splitter
each having a single attachment. To do this we need to provide a custom to the where we provide a List<Message> that contains the Expression Splitter
five messages with the single attachment.

The code is provided out of the box in Camel 2.10 onwards in the component. The code is in the class: camel-mail org.apache.camel.component.
, which you can find the source code mail.SplitAttachmentsExpression here

In the Camel route you then need to use this in the route as shown below:Expression {snippet:id=e1|lang=java|url=camel/trunk/components/camel-mail/src
If you use XML DSL then you need to declare a method call expression in the /test/java/org/apache/camel/component/mail/MailSplitAttachmentsTest.java} S

 as shown belowplitter

xml<split> <method beanType="org.apache.camel.component.mail.SplitAttachmentsExpression"/> <to uri="mock:split"/> </split>

From Camel 2.16 onwards you can also split the attachments as byte[] to be stored as the message body. This is done by creating the expression with
boolean true

SplitAttachmentsExpression split = SplitAttachmentsExpression(true);

And then use the expression with the splitter eip.

Using custom SearchTerm

Available as of Camel 2.11

You can configure a on the which allows you to filter out unwanted mails.searchTerm MailEndpoint

For example to filter mails to contain Camel in either Subject or Text you can do as follows:

xml<route> <from uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.subjectOrBody=Camel"/> <to uri="bean:myBean"/> </route>

Notice we use the as parameter key to indicate that we want to search on mail subject or body, to contain the word "searchTerm.subjectOrBody"
"Camel".
The class has a number of options you can configure:org.apache.camel.component.mail.SimpleSearchTerm

Or to get the new unseen emails going 24 hours back in time you can do. Notice the "now-24h" syntax. See the table below for more details.

xml<route> <from uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.fromSentDate=now-24h"/> <to uri="bean:myBean"/> <
/route>

You can have multiple searchTerm in the endpoint uri configuration. They would then be combined together using AND operator, eg so both conditions
must match. For example to get the last unseen emails going back 24 hours which has Camel in the mail subject you can do:

xml<route> <from uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.subject=Camel&searchTerm.fromSentDate=now-24h"/> <to
uri="bean:myBean"/> </route> confluenceTableSmall

Option Default Description

unseen true Whether to limit by unseen mails only.

subjectO
rBody

null To limit by subject or body to contain the word.

subject null The subject must contain the word.

body null The body must contain the word.

from null The mail must be from a given email pattern.

to null The mail must be to a given email pattern.

fromSent
Date

null The mail must be sent after or equals (GE) a given date. The date pattern is , eg use yyyy-MM-dd HH:mm:SS "2012-01-01
 to be from the year 2012 onwards. You can use for current timestamp. The "now" syntax supports an 00:00:00" "now"

optional offset, that can be specified as either + or - with a numeric value. For example for last 24 hours, you can use "now -
 or without spaces . Notice that Camel supports shorthands for hours, minutes, and seconds.24h" "now-24h"

toSentDa
te

null The mail must be sent before or equals (BE) a given date. The date pattern is , eg use yyyy-MM-dd HH:mm:SS "2012-01-
 to be before the year 2012. You can use for current timestamp. The "now" syntax supports an optional 01 00:00:00" "now"

offset, that can be specified as either + or - with a numeric value. For example for last 24 hours, you can use or "now - 24h"
without spaces . Notice that Camel supports shorthands for hours, minutes, and seconds."now-24h"

The is designed to be easily configurable from a POJO, so you can also configure it using a <bean> style in XMLSimpleSearchTerm

<bean id="mySearchTerm" class="org.apache.camel.component.mail.SimpleSearchTerm"> <property name="subject" value="Order"/> <property name="
to" value="acme-order@acme.com"/> <property name="fromSentDate" value="now"/> </bean>

https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://svn.apache.org/repos/asf/camel/trunk/components/camel-mail/src/main/java/org/apache/camel/component/mail/SplitAttachmentsExpression.java
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Splitter

You can then refer to this bean, using #beanId in your Camel route as shown:

xml<route> <from uri="imaps://mymailseerver?username=foo&password=secret&searchTerm=#mySearchTerm"/> <to uri="bean:myBean"/> </route>

In Java there is a builder class to build compound SearchTerm}}s using the {{org.apache.camel.component.mail.SearchTermBuilder
class.
This allows you to build complex terms such as:

// we just want the unseen mails which is not spam SearchTermBuilder builder = new SearchTermBuilder(); builder.unseen().body(Op.not, "Spam").subject
(Op.not, "Spam") // which was sent from either foo or bar .from("foo@somewhere.com").from(Op.or, "bar@somewhere.com"); // .. and we could continue
building the terms SearchTerm term = builder.build();

Endpoint See Also

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint+See+Also

	Mail

