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ABSTRACT

Modern users demand analytical features on fresh, real time data.
Offering these analytical features to hundreds of millions of users
is a relevant problem encountered by many large scale web com-
panies.

Relational databases and key-value stores can be scaled to pro-
vide point lookups for a large number of users but fall apart at the
combination of high ingest rates, high query rates at low latency
for analytical queries. Online analytical databases typically rely on
bulk data loads and are not typically built to handle nonstop oper-
ation in demanding web environments. Offline analytical systems
have high throughput but do not offer low query latencies nor can
scale to serving tens of thousands of queries per second.

We present Pinot, a single system used in production at Linkedin
that can serve tens of thousands of analytical queries per second,
offers near-realtime data ingestion from streaming data sources,
and handles the operational requirements of large web properties.
We also provide a performance comparison with Druid, a system
similar to Pinot.

CCS CONCEPTS

« Information systems — Relational parallel and distributed
DBMSs; « Software and its engineering — Cloud computing;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06...$15.00

https://doi.org/10.1145/3183713.3190661

Ravi Aringunram
LinkedIn Corp.
Mountain View, California
raringun@linkedin.com

ACM Reference Format:

Jean-Francois Im, Kishore Gopalakrishna, Subbu Subramaniam, Mayank
Shrivastava, Adwait Tumbde, Xiaotian Jiang, Jennifer Dai, Seunghyun Lee,
Neha Pawar, Jialiang Li, and Ravi Aringunram. 2018. Pinot: Realtime OLAP
for 530 Million Users. In SIGMOD’18: 2018 International Conference on Man-
agement of Data, June 10-15, 2018, Houston, TX, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3183713.3190661

1 INTRODUCTION

Modern web companies generate large amounts of data, and in-
creasingly sophisticated end users demand to be able to analyze
ever growing volumes of data. Doing so at scale, with interactive-
level performance requires sophisticated solutions to deliver the
responsiveness that users have come to expect.

We postulate that the key requirements for a scalable near-realtime
OLAP service are as follows:

Fast, interactive-level performance Users are not ready to wait
for extended periods of time for query results, as this breaks
the tight interaction loops needed to properly explore data;

Scalability A scalable service should provide near-linear scaling
and fault tolerance to handle the demanding operational re-
quirements of large scale web scale deployments in order
to accomodate high numbers of concurrent queries while
ingesting large amounts of data in a near-realtime fashion;

Cost-effectiveness As data volumes and query rates keep on in-
creasing, the costs to serve user requests cannot grow un-
bounded, often requiring colocation of different use cases;

Low data ingestion latency Users expect to be able to query data
points that have been added recently in a near-realtime fash-
ion without having to wait for batch jobs to load data;
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Flexibility Users demand the ability to drill down arbitrarily with-
out being bound by pre-aggregated results as well as intro-
duce new fixed query patterns in production without down-
time;

Fault tolerance System failures should cause a graceful degrada-
tion for end users;

Uninterrupted operation The service should operate continu-
ously, without downtime for upgrades or schema changes;

Cloud-friendly architecture The service should be easily deploy-
able within the constraints of commercially available cloud
services.

Interactive-level responsiveness is an important problem, being
identified as a key challenge by various authors [8, 18]. Approaches
such as MapReduce [10] and Spark [31] have adequate throughput
but “their high latency and lack of online processing limit fluent
interaction [15]” Furthermore, sophisticated users expect respon-
sive dashboards and complex data visualizations that allow quick
drill downs [16].

At web scale, scalability is a critical concern; any solution that
does not offer near-linear scaling will eventually need to be re-
placed when the requirements exceed the scaling capacity. Most
large-scale distributed data systems satisfy this near-linear scaling
capability and Pinot is no exception to this.

Cost effectiveness is also a key concern in a scalable query en-
gine. While technically it is possible to lower query latency and
increase throughput by “throwing hardware at the problem”, do-
ing so quickly becomes prohibitively expensive when operating
at large scale. Performance is intimately tied to cost effectiveness;
hardware resources that are currently processing a query are un-
available for other queries, by definition. Thus, increasing perfor-
mance also has the side effect of improving cost effectiveness.

Ingestion latency is another important facet of analytics. Many
commercially available systems for analytics cannot handle single
row loads and rely on bulk loads for data ingestion. This has the
side effect of increasing the time from a business event happening
and it being detectable by analysts.

An analytical system also needs to be flexible; limiting users to
predefined combinations of dimensions when drilling down or oth-
erwise preventing users from accessing record-level details ham-
pers the data analysts in their daily work, causing them to query
other systems to get more granular information. It also needs to be
reconfigurable in order to allow for changing requirements from
users.

Furthermore, different use cases for near-realtime OLAP sys-
tems have different complexity and throughput requirements. Dash-
boards for millions of end users might be limited to one or two
facets due to the large amount of incoming queries, while lower
throughput use cases will typically feature more complex drill down
features.

Finally, fault tolerance and continuous operation are required to
satisfy the demands of today’s continuously operating web prop-
erties; as these web properties are available globally, there is no
good window for system maintenance downtime.

Given these criteria, we present Pinot, a single system that serves
near-realtime analytics for all Linkedin users, spanning from sim-
ple high throughput queries for large numbers of end-users such

as newsfeed customization and “Who viewed my profile” to more
complicated dashboards for advertiser analytics and internal ana-
lytics. We present our findings from operating Pinot at scale, and
compare the performance and scalability of the different indexing
techniques implemented in Pinot on production workloads. We
also compare the performance of Pinot with Druid [30], an ana-
lytical system with an architecture similar to Pinot.

2 RELATED WORK

We now survey different approaches to online analytics.

Traditional row-oriented RDBMS can process OLAP-style queries,
albeit inefficiently. This has the advantage of allowing analytical
queries on the same system used for OLTP and avoiding to incur
the maintenance costs of multiple systems. At smaller web compa-
nies, one oft-encountered configuration is to build a read replica
of the OLTP database, which is then used for analytical purposes.
However, as data volumes increase, the cost of maintaining per-
column indexes limits ingest rates for such setups. Furthermore,
as OLTP databases are often normalized while OLAP analysis is
significantly faster using star schemas, snowflake schemas, or fully
denormalized tables, the performance of analytics on such systems
eventually becomes unacceptable.

Column stores, such as MonetDB [5], C-Store [26], Vertica [21],
and many others offer significant performance improvements over
row-oriented stores for analytical queries. As analytical queries
tend to scan large amounts of data for a subset of all columns, col-
umn stores improve the query performance by avoiding transfer-
ring data that is not used to compute the query result, and allow
for compression and various optimizations [2, 14] that are not pos-
sible in row-oriented data stores. However, column stores do not
do very well for certain operations, such as single-row inserts, up-
dates, and point lookups.

Some newer databases, such as SAP HANA [12], DB2 BLU [25],
Oracle Database in-memory [20], and MemSQL [9], integrate both
row-oriented and columnar execution within the same database. In
these hybrid transactional/analytical processing databases, tables
can be row or column oriented — or even both — allowing users to
mitigate the drawbacks of either orientation by using the optimal
data orientation for their needs.

At large scale, “offline” approaches to OLAP are also used. Sys-
tems such as Hive [27], Impala [4], and Presto [1] offer distributed
query execution on large data sets. Such systems do not keep user
data resident in memory between queries and instead rely on op-
erating system caches to speed up repeated queries on the same
data set; their execution model is to execute queries on a set of dis-
tributed worker nodes. As shown in the performance evaluation
of Spark [31], the cost of loading data from storage for each query
is significant. Furthermore, as such systems do not keep data resi-
dent in memory, they cannot handle data that has not been written
to durable distributed storage; in practice, this translates to a data
availability gap between transactional systems and analytical sys-
tems. Finally, such systems have a relatively high per-query set up
time (from hundreds of milliseconds to several dozens of seconds),
precluding the execution of tens of thousands of queries per sec-
ond.



There are also large performance gains to be had by building
more specialized systems. For example, Figure 6 of [17] shows how
a specialized system can have order of magnitude improvements
in performance over more general approaches. One way to im-
prove the performance of OLAP system is to preaggregate data
into cubes, then perform query execution on the preaggregated
data. As each cube can contain an unbounded number of rows,
this can offer performance improvements of several orders of mag-
nitude. At large scale, the cubes can be stored in distributed key-
value stores [28, 32].

However, these performance improvements come at the expense
of query flexibility; queries that contain dimensions for which there
is no preexisting aggregate cannot be executed. This limits the
range of queries to certain combinations of dimensions. Further-
more, some resolution is lost in the preaggregation, so filtering
based on timestamps with fine granularity or computing exact val-
ues for summary statistics that require the original data (median,
distinct count, etc.) are not possible.

Another example of a specialized system is Druid [30]. Similar
to Pinot, Druid is an asynchronous low latency ingestion analytical
store. Unlike transactional systems, data is loaded asynchronously
in Druid by writing it into a queuing system (Kafka is used for both
Druid and Pinot). The asynchronous loading allows the producer
of events to quickly write desired business events to the queuing
system without waiting for a transaction to complete. This means
that critical front-end transactional processing is not blocked on
back-end analytical system availability. Ingestion in Druid is also
low latency, as indexing of events happens shortly after being writ-
ten to Kafka as opposed to being bulk loaded periodically.

Both Druid and Pinot share similar architectural choices; query

execution is distributed, data is ingested asynchronously from stream-

ing sources, and both trade off strong consistency for eventual
timeline consistency. However, unlike Druid, Pinot has been opti-
mized for handling both high throughput serving of simple analyti-
cal queries and more complex analytical queries at lower rates. Fur-
thermore, the integration of additional specialized data structures
and certain optimizations, as described in section 4, allows for high
throughput serving of low complexity aggregation queries at tens
of thousands of queries per second in production environments.

Table 1: A comparison of the techniques for OLAP and their
applicability to large scale serving.

Technique Fast ingest High query Query flexi- Query la-
and indexing  rate bility tency

RDBMS Not typically ~ Yes High Low/moderate

KV stores Yes Yes None Low

Online OLAP No Not typically ~ High Low/moderate”

“Offline” OLAP  No No High High

Druid Yes No Moderate Low/moderate

Pinot Yes Yes Moderate Low

3 ARCHITECTURE

Pinot is a scalable distributed OLAP data store developed at LinkedIn
to deliver real time analytics with low latency. Pinot is optimized
for analytical use cases on immutable append-only data and offers
data freshness that is on the order of a few seconds. We have been

running Pinot in production at LinkedIn for many years across
hundreds of servers and tables processing thousands of queries per
second. Importantly, Pinot is used to power customer facing appli-
cations such as “Who viewed my profile” (WVMP) and newsfeed
customization which require very low latency as well as internal
business analyst dashboards where users want to slice and dice
data.

At Linkedin, business events are published in Kafka streams and
are ETL’ed onto HDFS. Pinot supports near-realtime data inges-
tion by reading events directly from Kafka [19] as well as data
pushes from offline systems like Hadoop. As such, Pinot follows
the lambda architecture [23], transparently merging streaming data
from Kafka and offline data from Hadoop. As data on Hadoop is a
global view of a single hour or day of data as opposed to a direct
stream of events, it allows for the generation of more optimal seg-
ments and aggregation of records across the time window.

3.1 Data and Query Model

Just like typical databases, data in Pinot consists of records in ta-
bles. Tables have a fixed schema composed of multiple columns.
Supported data types are integers of various lengths, floating point
numbers, strings and booleans. Arrays of the previous types are
also supported. Each column can be either a dimension or a met-
ric.

Pinot also supports a special timestamp dimension column called
a time column. The time column is used when merging offline and
realtime data as explained in section 3.3.3 and for managing auto-
matic data expiration.

Tables are composed of segments, which are collections of records.
A typical Pinot segment might have a few dozen million records
and tables can have tens of thousands of segments. Segments are
replicated, ensuring data availability. Data in segments is immutable,
although segments themselves can be replaced with a newer ver-
sion; this allows for updates and corrections to existing data.

Data orientation in Pinot segments is columnar. Various encod-
ing strategies are used to minimize the data size, including dictio-
nary encoding and bit packing of values. Inverted indexes are also
supported. A typical segment is a few hundred megabytes up to a
few gigabytes.

Querying in Pinot is done through PQL, a subset of SQL. PQL
is modeled around SQL and supports selection, projection, aggre-
gations, and top-n queries, but does not support joins or nested
queries. PQL does not offer any DDL nor record-level creation, up-
dates or deletion.

Docld | Model | Year Price tags tags

moon-oof, relable

Toyota | 1987 7500 | moon-rool, reliabie

Toyota | 2001 7500 mp3, compact
Mazda | 2005 1500 ‘Manual, compact

Honda | 2010 8000 Teather, cool |:>

Honda | 2011 9000 automatic

mpa, compact

Manual, compact

leather, cool

automatic

INDEX
GENERATION

10000 | bmw 25000 | moon-oo, relable moon-oof, reliable

RAW DATA COLUMNAR DATA

Figure 1: Pinot Segment



3.2 Components

Pinot has four main components for data storage, data manage-
ment, and query processing: controllers, brokers, servers, and min-
ions. Additionally, Pinot depends on two external services: Zoo-
keeper and a persistent object store. Pinot uses Apache Helix [13]
for cluster management. Apache Helix is a generic cluster man-
agement framework that manages partitions and replicas in a dis-
tributed system.

Servers are the main component responsible for hosting seg-
ments and processing queries on those segments. A segment is
stored as a directory in the UNIX filesystem consisting of a seg-
ment metadata file and an index file. The segment metadata pro-
vides information about the set of columns in the segment, their
type, cardinality, encoding, various statistics, and the indexes avail-
able for that column. An index file stores indexes for the all the
columns. This file is append-only which allows the server to create
inverted indexes on demand. Servers have a pluggable architecture
that supports loading columnar indexes from different storage for-
mats as well as generating synthetic columns at runtime. This can
be easily extended to read data from distributed filesystems like
HDEFS or S3. We maintain multiple replicas of a segment within a
datacenter for higher availability and query throughput. All repli-
cas participate in query processing.

UPLOAD

ALLOCATE CREATE SEGMENT

SERVER/BROKER TABLE

" PINOT
& BROKER

SPECTATOR

PINOT CONTROLLER

| PINOT
+| ADMIN CONSOLE

HELIX
CONTROLLER  |!

HELIX STATE
RANSITION

CONFIGS

EXTERNAL
VIEW

PINOT
SEGMENTS™ ~ -

ZOOKEEPER

TABLE B

HELLX
PARTICIPANT

Figure 2: Pinot Cluster Management

Controllers are responsible for maintaining an authoritative map-
ping of segments to servers using a configurable strategy. Con-
trollers own this mapping and trigger changes to it on operator
requests or in response to the changes in server availability. Addi-
tionally, controllers support various administrative tasks such as
listing, adding, or deleting tables and segments. Tables can be con-
figured to have a retention interval after which segments past the
retention period are garbage collected by the controller. All the
metadata and mapping of segments to servers is managed using
Apache Helix. For fault tolerance, we run three controller instances
in each datacenter with a single master; non-leader controllers are
mostly idle. Controller mastership is managed by Apache Helix.

Brokers route incoming queries to appropriate server instances,
collect partial query responses, merge them into a final result, which
is then sent back to the client. Pinot clients send their queries to
brokers over HTTP, allowing for load balancers to be placed in
front of the pool of brokers.

Minions are responsible for running compute-intensive mainte-
nance tasks. Minions execute tasks assigned to them by the con-
trollers’ job scheduling system. The task management and sched-
uling is extensible to add new job and schedule types in order to
satisfy evolving business requirements.

An example of a task that is run on the minions is data purg-
ing. Linkedin must sometimes purge member-specific data in or-
der to comply with various legal requirements. As data in Pinot is
immutable, a routine job is scheduled to download segments, ex-
punge the unwanted records, rewrite and reindex the segments be-
fore finally uploading them back into Pinot, replacing the previous
segments.

Zookeeper is used as a persistent metadata store and as the com-
munication mechanism between nodes in the cluster. All informa-
tion about the cluster state, segment assignment and metadata is
stored in Zookeeper though Helix. Segment data itself is stored
in the persistent object store. At Linkedin, Pinot uses a local NFS
mountpoint for data storage but we have also used Azure Disk stor-
age when running outside of Linkedin’s datacenters.

3.3 Common Operations

We now explain how common operations are implemented in Pinot.

3.3.1 Segment Load. Helix uses state machines to model the
cluster state; each resource in the cluster has its own current state
and desired cluster state. When either state changes, the appropri-
ate state transitions are sent to the respective nodes to be executed.

Pinot uses a simple state machine for segment management, as
shown in Figure 3. Initially, segments start in the OFFLINE state
and Helix requests server nodes to process the OFFLINE to ON-
LINE transition. In order to handle the state transition, servers
fetch the relevant segment from the object store, unpack it, load
it, and make it available for query execution. Upon the completion
of the state transition, the segment is marked as being in the ON-
LINE state in Helix.

For realtime data that is to be consumed from Kafka, a state
transition happens from the OFFLINE to CONSUMING state. Upon
processing this state transition, a Kafka consumer is created with a
given start offset; all replicas for this particular segment start con-
suming from Kafka at the same location. A consensus protocol de-
scribed in section 3.3.6 ensures that all replicas converge towards
an exact copy of the segment.

Figure 3: Pinot Segment State Machine
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Figure 4: Pinot Segment Load

3.3.2  Routing Table Update. When segments are loaded and un-
loaded, Helix updates the current cluster state. Brokers listen to
changes to the cluster state and update their routing tables, a map-
ping between servers and available segments. This ensures that
brokers are routing queries to replicas that are available as new
replicas come online or are marked as unavailable. The process of
routing table creation is described in more detail in section 4.4.

3.3.3  Query Processing. When a query arrives on a broker, sev-
eral steps happen:

(1) The query is parsed and optimized

(2) A routing table for that particular table is picked at random

(3) All servers in the routing table are contacted and asked to
process the query on a subset of segments in the table

(4) Servers generate logical and physical query plans based on
index availability and column metadata

(5) The query plans are scheduled for execution

(6) Upon completion of all query plan executions, the results
are gathered, merged and returned to the broker

(7) When all results are gathered from the servers, the partial
per-server results are merged together. Errors or timeouts
during processing cause the query result to be marked as
partial, so that the client can choose to either display in-
complete query results to the user or resubmit the query at
a later time.

(8) The query result is returned to the client

Pinot supports dynamically merging data streams that come
from offline and realtime systems. To do so, these hybrid tables
contain data that overlaps temporally. Figure 6 shows that a hypo-
thetical table with two segments per day might have overlapping
data for August 1! and 279, When such a query arrives in Pinot,
it is transparently rewritten into two queries; one query for the
offline part, which queries data prior to the time boundary, and a
second one for the realtime part, which queries data at or after the
time boundary.

When both queries complete, the results are merged, allowing
us to cheaply provide merging of offline and realtime data. In order
for this scheme to work, hybrid tables require having a time column

SELECT ... Q
FROM .. Ve ot
" Logical I:l

P
\{.EVECESEBY ier. Q Planner, g
™ Bl
oo gy

AST
S.ITQI E é])( Logigal Operator Tree
Physical

[ABSTRACT
Planner
; Executor Per

Service segment
D - " executor

3

OO0

Physici perator Tree

Figure 5: Query Planning Phases

that is shared between the offline and realtime tables. In practice,
we have not found this to be an onerous requirement, as most data
written to streaming systems tend to have a temporal component.

SELECT SUM(foo) WHERE
date >='Aug 2'

A
g

Realtime [Aung AugleAugZZIAug3lIAu932]

» time

Offline [Ju\sl 11Ju\ SlzlAuglllAuglz AugleAugZZ]

SELECT SUM(foo) WHERE
date <'Aug 2’

Figure 6: Hybrid Query Rewriting

3.3.4 Server-Side Query Execution. On the server-side, when a
query is received, logical and physical query plans are generated.
As available indexes and physical record layouts can be different
between segments, query plans are generated on a per-segment ba-
sis. This allows Pinot to do certain optimizations for special cases,
such as a predicate matching all values of a segment. Special query
plans are also generated for queries that can be answered using seg-
ment metadata, such as obtaining the maximum value of a column
without any predicates.

Physical operator selection is done based on an estimated exe-
cution cost and operators can be reordered in order to lower the
overall cost of processing the query based on per-column statistics.
The resulting query plans are then submitted for execution to the
query execution scheduler. Query plans are processed in parallel.

3.3.5 Data Upload. To upload data, segments are uploaded to
the controller using HTTP POST. When a controller receives a seg-
ment, it unpacks it to ensure its integrity, verifies that the segment
size would not put the table over quota, writes the segment meta-
data in Zookeeper, then updates the desired cluster state by assign-
ing the segment to be in the ONLINE state on the appropriate num-
ber of replicas. Updating the desired cluster state then triggers the
segment load as described earlier.



SELECT campaignld, sum(click)
FROM Table A

WHERE

accountld = 121011 AND

‘day' == 15949 GROUP BY campaignld

Aggregation
Group By
Operator

Campaign Id, Click Tuple

Frojection
Operator

Filter
Operator

N
swaree () () () O

Account Id Day

Campaign Id Click

S

Figure 7: Query Planning Phases

Object
store

2. Write segment to object store

1. Segment upload—»|  Controller |—4. Load segment...»| Server

T
3. Write metadata to Zookeeper

L

Zookeeper

Figure 8: Pinot Data Upload

3.3.6  Realtime Segment Completion. InPinot, realtime data con-
sumption from Kafka happens on independent replicas. Each replica
starts consuming from the same start offset and has the same end
criteria for the realtime segment. When the end criteria is reached,
the segment is flushed to disk and committed to the controller. As
Kafka retains data only for a certain period of time, Pinot supports
flushing segments after a configurable number of records and after
a configurable amount of time.

Independent consumers consuming from the same Kafka offset
and partition for the exact same number of records will consume

the same exact data; however, two consumers consuming for a cer-
tain amount of time based on their local clock will likely diverge.
As such, Pinot has a segment completion protocol that ensures that
independent replicas have a consensus on what the contents of the
final segment should be.

When a segment completes consuming, the server starts polling
the leader controller for instructions and gives its current Kafka
offset. The controller then returns a single instruction to the server.
Possible instructions are:

HOLD Instructs the server to do nothing and poll at a later time

DISCARD Instructs the server to discard its local data and fetch
an authorative copy from the controller; this happens if an-
other replica has already successfully committed a different
version of the segment

CATCHUP Instructs the server to consume up to a given Kafka
offset, then start polling again

KEEP Instructs the server to flush the current segment to disk and
load it; this happens if the offset the server is at is exactly
the same as the one in the committed copy

COMMIT Instructs the server to flush the current segment to disk
and attempt to commit it; if the commit fails, resume polling,
otherwise, load the segment

NOTLEADER Instructs the server to look up the current cluster
leader as this controller is not currently the cluster leader,
then start polling again

Replies by the controller are managed by a state machine that
waits until enough replicas have contacted the controller or enough
time has passed since the first poll to determine a replica to be the
committer. The state machine attempts to get all replicas to catch
up to the largest offset of all replicas and picks one of the replicas
with the largest offset to be the committer. On controller failure, a
new blank state machine is started on the new leader controller;
this only delays the segment commit, but otherwise has no effect
on correctness.

This approach minimizes network transfers while ensuring all
replicas have identical data when segments are flushed.

3.4 Cloud-Friendly Architecture

Pinot has been specifically designed to be able to run on cloud in-
frastructure. Commercially available cloud infrastructure providers
provide the two important ingredients required for Pinot execu-
tion: a compute substrate with local ephemeral storage and a durable
object storage system.

As such, Pinot has been designed as a share-nothing architec-
ture with stateless instances. In Pinot, all persistent data is stored
in the durable object storage system and system metadata is stored
in Zookeeper; local storage is only used as a cache and can be recre-
ated by pulling data from the durable object storage or from Kafka.
As such, any node can be removed at any time and replaced by a
blank one without any issues.

Furthermore, all user-accessible operations for Pinot are done
through HTTP, allowing users to leverage existing battle-tested
load balancers — such as HAProxy or nginx — or client-side soft-
ware load balancers like Linkedin’s D2.

This cloud-friendly architecture has allowed us to trivially port
Pinot to be ran on off the shelf container execution services with



only the code changes required to interface with the cloud provider’s
object storage system. Such an architecture allows for easy deploy-
ment and scaling using container managers such as Kubernetes.

4 SCALING PINOT

Several features of Pinot were essential to get acceptable perfor-
mance at scale. We cover these features and explain how they en-
able Pinot to serve analytical queries for Linkedin’s users.

4.1 Query Execution

Pinot’s query execution model has been designed to accommodate
new operators and query shapes. For example, the initial version
of Pinot did not support metadata-only queries for queries such as
SELECT COUNT (*). Adding support for such queries involved a few
changes to the query planner and adding a new metadata-based
physical operator, but did not require any architectural changes.

Pinot’s physical operators are specialized for each data represen-
tation; there are operators for each different data encoding. This
flexibility allows us to add new index types and specialized data
structures for query optimization. As we can reindex data on the
fly on servers themselves or through the minion subsystem, it is
possible for us to deploy new index types and encodings without
users of Pinot being aware of such changes.

4.2 Indexing and Physical Record Storage

Similar to Druid, we support bitmap-based inverted indexes. How-
ever, we have observed that physically reordering the data based
on primary and secondary columns allows certain types of queries
to run significantly faster.

For example, for the “Who viewed my profile” feature of the
Linkedin website, all queries have a filter on the vieweeId column.
As such, physically reordering the records based on the vieweeId
column ensures that for any given query, only a contiguous sec-
tion of the column needs to be considered, allowing Pinot to store
only the start and end index into the column position for any given
vieweeld. This adjacency also makes it possible to use vectorized
query execution in the case where there are no other query predi-
cates.

In the case where vectorized query execution is not possible, we
have observed that falling back to iterator-style scan query execu-
tion on a range of the column leads to better query performance
than trying to perform bitmap operations on large bitmap indexes.

As such, when creating physical filter operators, the ones oper-
ating on the physically sorted column are executed first and pass
on their column range to subsequent operators. This causes sub-
sequent operators to only evaluate part of the column, greatly im-
proving performance.

4.3 Iceberg Queries

An important class of queries are iceberg queries [11], where only
aggregates that satisfy a certain minimum criteria are returned. For
example, an analyst might be interested in knowing which coun-
tries contribute the most page views for a given page, but not the
entire list of all countries that visited the page; for such a query, re-
turning the countries that exceed a minimum page view threshold

is sufficient to answer the question the analyst had. This is espe-
cially important in data sets which have a long tail distribution
and analysts that are mostly concerned with “moving the needle”
on key metrics. Such queries happen frequently in dashboarding
use cases.

Iceberg cubing [3] expands on OLAP cubes by adapting them to
answer iceberg queries. Further work on iceberg cubing brought
several advances, such as star-cubing [29], which improves the ice-
berg cubing technique by making it more efficient to compute in
comparison to other iceberg cubing approaches for most cases. In
star-cubing, a pruned hierarchical structure of nodes called a star-
treeis constructed and can be efficiently traversed to answer queries.

Star-trees consist of nodes of preaggregated records; each level
of the tree contains nodes that satisfy the iceberg condition for a
given dimension and a star-node which represents all data for this
particular level. Navigating the tree allows answering queries with
multiple predicates. For example, Figure 9 shows a simple query
to obtain the sum of all impressions with a simple predicate; to an-
swer the query, each level of the tree is navigated until finding the
node that contains the aggregated data that answers this specific
query. Figure 10 shows a more complex query with an or predicate
for which multiple navigations are required to answer the query.

~

& |

ca | [ mx

us | \
ffox saf chr a2

A v S / \ /

Figure 9: select sum(Impressions) from Table where
Browser = ’firefox’

We have implemented star-trees in Pinot and routinely use them
to speed up analytical queries for our internal data analytics tools.
As Pinot determines which physical query execution nodes can be
applied given the indexes available, if a user specifies a query that
can be optimized by using the star-tree structure, we transparently
use it to return pre-aggregated values; otherwise, query execution
runs on the original unaggregated data.

4.4 Query Routing and Partitioning

In Pinot, for unpartitioned tables, we pre-generate a routing table,
which is a list of mappings between servers and their subset of seg-
ments to be processed when a query is executed. Formally, given
a set of segments U = {S1, Sz, ...,Sn} and a collection A of m sets
that represent the segments assigned to each server, generating a
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Figure 10: select sum(Impressions) from Table where
Browser = ’firefox’ or Browser = ’safari’ group by
Country

single routing table entry is the act of picking a collection of sub-
sets of the elements of A such that the union of the sub-sets in the
collection is equivalent to U.

Pinot supports various query routing options, which were found
to be necessary at scale. The default query routing strategy in Pinot
is a balanced strategy that simply divides all the segments con-
tained in a table in an equal fashion across all available servers. In
other words, when a query is processed, all servers are contacted
and given a query to execute on their share of the segments to
process.

The balanced strategy works well for small and medium sized
clusters, but quickly becomes impractical for larger clusters. Intu-
itively, we can guess that the larger the cluster, the more likely it
is that a single host in the cluster will be unavailable or have is-
sues that slow down query processing. Figure 14 and 16 of [24]
empirically show that such stragglers exist even in other systems.

As such, Pinot has a special routing strategy for large clusters
that minimizes the number of hosts contacted in the cluster for
any given query; this minimizes the adverse impact of any given
misbehaving host and reduces tail latency for larger clusters.

Since picking the exact minimal subset of A such that U is cov-
ered is a NP-hard problem, we have implemented a random greedy
strategy that produces an approximately minimal subset that also
ensures a balanced load across all servers. Algorithms 1 and 2 ex-
plain how routing tables are generated and selected during the
large cluster routing table generation. During the large cluster rout-
ing table generation, many routing tables are generated by taking
arandom subset of servers and adding additional servers until U is
completely covered; segments are then assigned as evenly as possi-
ble amongst the servers selected. For each routing table generated,
a metric is used to determine the routing table’s fitness — empiri-
cal testing has shown that the variance of the number of segments
assigned per server works well — and the routing tables that have
the lowest metrics are kept.

Pinot also supports partitioned tables, where data is partitioned
according to a partition function. When a table is partitioned, the
router does not generate routing tables but rather routes queries
only to the servers that contain relevant segments given the query
filters. Since Pinot supports realtime ingestion of data from Kafka,

Pinot includes a partition function that matches the behavior of
the Kafka partition function, allowing for Pinot offline data to be
partitioned in the same way as the realtime data.

Algorithm 1 Routing table generation

> S a set of segments for this table

> I a set of instances assigned for this table

> T the target server count per query

> Sorphan @ set of segments with no servers associated

> I,,s0q a set of instances in use

> IS a map of instances to a list of segments served by the in-
stance

> SI a map of segments to a list of instances that serves this
segment

> Qs; a priority queue of segments and potential instances list,
sorted in ascending order of the length of the instance list

procedure GENERATEROUTINGTABLE
Sorphan <= S v Initially, all segments have no associated
instance
Lyseqa — @
if length(I) < T then
I,seqa < 1  »>Ifthere are less than T instances, use all
instances
Sorphan — 0o
else
while length(I,;s.q) < T do » Pick T random instances
I andom < P1ckRanDom(I)

Lised < lusea Y Urandom}

Sorphan <= Sorphan ~ 1S.get(Irandom)
end while

end if
while Sy, ppan # @ do
segments
Irandom < PICKRANDOM(SI.get(Sorphan-first))
Lysed < Iusea Y {Irandom}
Sorphan - Sorphan - Isyet([random)
end while
Qsi — ©@
for Scurrent < S do
Iseqg < SI.get(Scurrent) N Iyseq > Get instances for this
segment
Qsi-PUt(Scurrent,Iseg)
end for
R—o
while Qs; # @ do » Iterate segments in ascending order of
instances
(Scurrent»Iseg) « Qsi.takeFirst()
Ipicked < PICKWEIGHTEDRANDOMREPLICA(R, Iseg)
R.put(Scurrent. Ipicked)
end while
return R
end procedure

> Add servers to serve orphan




Algorithm 2 Routing table selection

> H a max heap of routing tables and their associated
metric

> C the target routing table count

> G the number of routing tables to generate

procedure FILTERROUTINGTABLES
H«o
for i — 1..C do
R «— GENERATEROUTINGTABLE
M «— COMPUTEMETRIC(R)
H.put(R, M)
end for
for i — C..G do
R «— GENERATEROUTINGTABLE
M «— COMPUTEMETRIC(R)
(RtopaMtop) — HtOp()
if M < Myop then » New routing table better than
the worst one?

H.pop() » Yes, remove worst and add new one
H.put(R, M)
end if
end for

end procedure

4.5 Multitenancy

For larger companies, having dedicated clusters on a per-use case
basis eventually becomes problematic; at Linkedin, there are cur-
rently several thousand tables split between more than 50 tenants.
As such, Pinot supports multitenancy, with multiple tenants colo-
cated on the same hardware. To prevent any given tenant from
starving other tenants of query resources, a token bucket is used
to distribute query resources on a per tenant basis. Each query
deducts a number of tokens from its tenant’s bucket that is pro-
portional to the query execution time; when the bucket is empty,
queries are enqueued to be processed whenever tokens are avail-
able again. The token bucket slowly refills over time, allowing for
short transient spikes in query loads but preventing a misbehaving
tenant from exhausting resources for other colocated tenants.

5 PINOT IN PRODUCTION

At Linkedin, Pinot runs on over 3000 geographically distributed
hosts, serves over 1500 tables with over one million segments, for a
total compressed data size of nearly 30 TiB (excluding data replica-
tion). Pinot’s current production query rate across all data centers
exceeds 50000 queries per second.

We now discuss the practical lessons learned while running Pinot
at scale at Linkedin.

5.1 Use Case Types
At Linkedin, we have observed that users of Pinot tend to be split
between two categories:

o Use cases with high throughput, low complexity queries for
relatively simple analytical features like “who viewed my
profile” and feed customization.

e Use cases with low query rates but more complex queries
or larger data volumes, such as advertiser audience reach,
self-service analytical tools or anomaly detection tools

The first type of use cases typically requires data to be present
in main memory in order to serve the tens of thousands of queries
per second required. These users tend to run a very small number
of query patterns.

The latter type of use cases are typically colocated on hardware
with NVMe storage, as the lower query rates and more lenient la-
tency expectations make it possible to simply load the data on de-
mand. These users typically have low query rates, but tend to have
bursty spikes of queries when users request dashboards or start an-
alyzing anomalies. For these use cases, colocation with other ten-
ants is important to minimize the hardware footprint, as otherwise
the hardware would be idle for a significant fraction of the time.

5.2 Operational Concerns

At Linkedin, Pinot is operated using a service model; teams devel-
oping user features use Pinot just like any other service while the
Pinot team provides ongoing support and runs the service on a
day-to-day basis. As the number of teams using Pinot increases
over time, having dedicated staff to handle support and tuning on
a per team basis would mean that the staffing requirements would
increase over time. As such, we have designed Pinot to enable a
self-service model as much as possible.

For example, Pinot allows changing schemas on the fly to add
new columns without downtime. When a new column is added to
an existing schema, it is automatically added with a default value
on all previously existing segments and made available within a
few minutes. We also parse the query logs and execution statistics
on an ongoing basis in order to automatically add inverted indexes
on columns where they would prove beneficial.

Replicating table configurations across multiple data centers and
environments (testing and production) has routinely been a prob-
lem. Currently, our solution is to store table configurations in source
control and synchronize them with Pinot on an ongoing basis through
Pinot’s REST APL This allows us to have an audit trail of changes
and leverage search, validation, and code review tooling for all
schema, index and configuration changes.

6 PERFORMANCE

We now evaluate the performance of Pinot in various scenarios,
ranging from low throughput use cases to high throughput ones.
As Druid is a system similar to Pinot, we also compare the perfor-
mance of Druid and Pinot on those scenarios. As to ensure a realis-
tic evaluation, data sets and queries were pulled from production
systems; the data sets comprised the entirety of the data for each
scenario evaluated while the queries were sampled to have tens of
thousands of different queries in order to simulate a production en-
vironment. Realtime ingestion was disabled for both systems, due
to the complexity of setting a repeatable environment shared be-
tween Pinot and Druid.

For both Pinot and Druid, nine hosts equipped with single socket
Xeon® E5-2680 v3 processors running at 2.50 GHz are used to run
the query processing. For Pinot, this means that the Pinot server
is installed on these hosts; for Druid, the historical server and the



middle manager are running on these hosts, as recommended by
the Druid documentation. Each host has 64 GiB of RAM installed
and 2.8 TB of NVMe storage attached. The operating system used
is Red Hat Enterprise Linux release 6.9 (Santiago).

For query distribution, three instances of the Pinot broker are
running. The brokers are equipped with dual Xeon® E5-2630 v2
processors clocked at 2.60GHz and 64 GiB of RAM. One host runs
RHEL release 6.5 while the other two run RHEL release 6.6. For
Druid, the brokers are equipped with a single Xeon® E5-2680 v3
CPU clocked at 2.50GHz and 64 GiB of RAM. One broker runs
RHEL 6.7 while the other two run RHEL 6.9. One broker host is
also running the Druid coordinator and Druid overlord.

The first scenario in which we evaluate the performance of Pinot
and Druid replicates the environment used for ad hoc reporting
and anomaly detection on multidimensional key business metrics
at Linkedin. As our anomaly detection system has a user-visible
component, the query set for this scenario has both automatically
generated queries used for monitoring as well as ad hoc queries
based on users doing root cause analysis for detected anomalies;
this means that Pinot needs to offer both high throughput for auto-
mated queries as well as low latency queries for interactive queries
coming from users. Queries contain aggregations of metrics with
a variable number of filtering predicates and grouping clauses, de-
pending on the specific drill down requested by the user.

The data size for this scenario is 16 GB of data for Pinot and
13.8 GB of data for Druid. Figure 11 shows the latency of different
indexing strategies as the query rate increases. On this dataset, the
performance of Druid quickly becomes too high for interactive pur-
poses. As expected, the performance of Pinot without indexes also
drops out quickly. Adding inverted indices also increases the scala-
bility of Pinot by a factor of two for this dataset, but the largest gain
in scalability comes from integrating the star tree index structure
described in section 4.3.
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Figure 11: Comparison of indexing techniques on the anom-
aly detection dataset

The kernel density estimate plot in figure 12 shows the distri-
bution of the latency of Druid and different indexing techniques

implemented in Pinot as 10000 queries are executed sequentially.
We can see that all systems have performance that is acceptable
for user interaction. We can see that Druid has comparable per-
formance with Pinot, when there are no indexes in Pinot; some
queries execute faster in Druid, but Druid also has more queries
that have high latency than Pinot without indexes. We can also
see that adapted index types improve performance over unindexed
data.

Figure 13 shows the distribution of the ratio of preaggregated
records scanned during query execution using star tree versus the
number of original unaggregated records. A ratio close to zero
means that fewer aggregated records are used to process a query
than execution over raw data, while a ratio close to one means that
there are little gains from preaggregation. We can see that most
queries execute on substantially fewer records than execution on
raw, unaggregated data.
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Figure 12: Distribution of query latency when running
queries sequentially on the anomaly detection dataset
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Figure 13: Distribution of the ratio of preaggregated records
scanned during query execution using star tree versus the
number of original unaggregated records

Pinot is also used to answer high selectivity analytical queries
from end users. Examples of this are the various analytical tools
available for end users that allow some limited analytics on who



viewed their published content as well as “who viewed my pro-
file” Queries for these scenarios are simple aggregations (sum of
clicks/views, distinct count of viewers) with a few facets such as re-
gion, seniority or industry for a piece of shared content or a given
user’s profile views.

The data size for Pinot is 300 GB and 1.2 TB for Druid. Figure 14
shows the performance of Druid and Pinot as the query rate in-
creases. For this particular comparison, there are two major differ-
ences between Pinot and Druid: the generation of inverted indexes
and the physical row ordering. In Druid, all dimension columns
have an associated inverted index; as not all dimensions are used in
filtering predicates, this leads to a larger on disk size for Druid over
Pinot. A large part of the performance difference between Druid
and Pinot in this comparison is due to the physical row ordering
in Pinot, where data is sorted based on the shared item identifier.
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Figure 14: Comparison of Druid and Pinot on the “share an-
alytics” dataset

As discussed in section 4.2, the physical ordering of records has
a significant impact on scalability. Figure 15 illustrates the scala-
bility difference between physically ordered records and bitmap-
based inverted indexes in Pinot when running against the “who

viewed my profile” dataset. Both Druid and Pinot use roaring bitmaps [6,

7] for their implementation of bitmap-based inverted indexes.
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Figure 15: Comparison of indexing techniques on the “Who
viewed my profile” dataset

Another interesting type of scenario for Pinot is illustrated by
the implementation of impression discounting [22]. Impression dis-
counting is the practice of tracking what items have been seen by
a particular user and using this to personalize the display of items

for that user; items that have been seen before by a user are “dis-
counted” based on their interaction with these items so that ig-
nored items are ranked lower for that user. This way, any given
user sees a fresh news feed that contains more relevant items and
fewer ignored items. For Pinot, this means that every news feed
view sends several queries to Pinot to fetch the list of items that
have been seen by a user. Furthermore, each news feed view and
scroll event sends additional events to be indexed by Pinot so that
they can be made available for subsequent queries in near realtime.

Figure 16 shows the results of adding query routing optimiza-
tions to Pinot, as described in section 4.4, and contrasts the perfor-
mance with Druid as a baseline. The performance of Druid on this
dataset is significantly better than with other datasets, although it
does not scale as well as Pinot. In this scenario, we can see that
while performance at low query rates is similar between unparti-
tioned and partitioned tables, adding partition awareness on the
broker limits the amount of overhead as the query rate increases,
leading to a significantly flatter latency curve.
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Figure 16: Comparison of routing optimizations on the im-
pression discounting dataset

7 CONCLUSION

We have described the architecture of a production-grade system
that is used to serve tens of thousands of queries per second in a de-
manding web environment, as well as some of the lessons learned
from scaling such a system. We have also shown that a single sys-
tem can process a wide range of commonly encountered analyti-
cal queries from a large web site. Finally, we have also compared
how Druid, a system similar to Pinot, performs with production
data and queries from a large professional network, as well as the
impact of various indexing techniques and optimizations imple-
mented in Pinot.

Future work includes adding additional types of indexes and
specialized data structures for query optimization and observing
their effects on query performance and service scalability.
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