Cache Promote

Optimizing Cache Hit Rate and Disk Churn
for Big Working Set Sizes

Miles Libbey

_—

Phenomenal Cosmic Power!!
Itty Bitty Living Space

Big Working Set,
Small Cache

e Disk churn increases — SSD life concerns

e Popular objects churned out of cache —> Cache hit rate
suffers

Cache Promote
Plugin

Don’t just cache everything the origin tells you to

Cache Promote
Plugin

Don’t tell me how to live my life

Decision Policies

e Random Chance

e Number of hits

Random Chance

e Popular objects get many tries

e 1 hit wonders, get 1 shot —
Some make it in.

Number of hits

Track each inbound url, with the number of hits its gotten
Table is limited to N urls — “Bucket Size”
Table eviction policy — Least Recently Used

When the url gets X hits, allow it into cache

But, what should | use for the number of hits?

Lets try the “knee of the curve”

Lets try the “knee of the curve”

Data Gathering ... for each
property on a cache node

e Group URLs by number of hits

o (Get the sum of their file sizes

e Sort by the number of hits descending

e Find the Cumulative File Size and Requests for each row

A B C D E F G H I

Urls Total Requests Total Size Cache Size Bandwidth

1 Hits #Hurls (Cum.) Regests (Cum.) (GB) (GB) Bandwidth (Cum.)
2 2444 1 1 2444 2444 0.01115 0.0111509 27.2527 LYY
3 | 2294 1 2 2294 4738 0.01072 0.0218669 24 .5827 51.8354
4 1772 1 3 1772 6510 0.00884 0.0307101 15.6701 67.5055
5 1714 1 4 1714 8224 0.00930 0.0400113 15.9423 33.4478
6 |1712 1 5 1712 9936 0.00847 0.0484776 14.4942 97.942
7 1650 1 6 1650 11586 0.00934 0.0578146 15.4061 113.348
76 22 258 1623 5676 80202 4.48084 20.4589 98.5786 016.444
77 20 372 1995 7440 37642 5.31028 25.7692 106.206 1022.65
78 18- 5151 - 2516 9270 06912 8.68765 34.4568 156.378 1179.03
79 16 808 3318 12928 109840 12.13733 46.5941 194.197 1373.22
80 14 1173 4491 16422 126262 17.89602 64.4902 250.544 1623.77
81 12 2078 6569 24936 151198 26.38207 90.8722 316.585 1940.35
82 10 3956 10525 39560 190758 61.04712 151.919 610.471 2550.82
83 8 10000 20525 80000 270758 130.78821 282.708 1046.31 3597.13
34 6 25035 45560 150210 420968 295.99959 578.707 1776 5373.13
85 4 48635 94195 194540 615508 545.31410 1124.02 2181.26 7554.38
36 2 95736 189931 191472 306980 977.62673 2101.65 1955.25 9509.64

No knees?

e Cache Hit change wasn’t repeatable
e Churn wasn’t repeatable
e Why?

e Didn’t consider the cache size

e Optimized each individual property, not the total cache

Knapsack problem

From Wikipedia, the free encyclopedia

The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the
number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its
name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.

The problem often arises in resource allocation where there are financial constraints and is studied in fields such as combinatorics, computer science, complexity
theory, cryptography, applied mathematics, and daily fantasy sports.

The knapsack problem has been studied for more than a century, with early works dating as far back as 1897.I' The name "knapsack problem" dates back to the

2

early works of mathematician Tobias Dantzig (1884-1956),/] and refers to the commonplace problem of packing the most valuable or useful items without

overloading the luggage.

 Best combination of things to put in your knapsack
e Maximize value [Bandwidth]

e Without going over [cache size]

Almost...

e Doesn’t quite fit classic problem

e Assumes item independence

Customize it

* Use the same data files from knees
* Test “all” the combinations
e First line from 1st file,
e with first line of 2nd file ...
* with first line of last

e with second line of last

e Add the bandwidths together, and track bandwidth records
e Final record is the answer

* [gnore all combinations where the sum of the cache sizes is too big

A few optimizations —
reduce the combinations

e Only look at big properties

e Aggregate the onsie-twosie lines together — to get some
minimal cache size per line

& D E F G |

Urls Total Requests Total Size Cache Size Bandwidth
Hits #urls (Cum.) Regests (Cum.) (GB) (GB) Bandwidth (Cum.)
2444 1 2444 2444 0.01115 0.0111509 f 27.2527 27.2527
2294 2294 4738 0.01072 0.0218669 f 24.5827 51.8354
1772 1772 6510 0.00884 0.0307101 8
1714 1714 8224 0.00930 0.0400113 15.942 Sb .
1712 1712 9936 0.00847 0.0484776 14.4942 97.942
1650 1650 11586 0.00934 0.0578146 ¢ 15.4061 113.348
22 5676 80202 4.48084 20.4589 §98.5786
20 7440 87642 5.31028 25.7692 § 106.206 1§

18 9270 96912 8.68765 34.4568 156.378 1179.03
16 12928 109840 12.13733 46.5941 194.197 1373.24

1|
2
3
4
3
6
L

~J

Perhaps the number of unique
urls the property sees in the
desired churn time?

Experiment

e Apply the settings to one machine

e Don’t apply the settings to its brother with the same traffic

Disk Churn dropped ...
A A M A W LAY W,

W

Bandwidth Cache Hit Rate

Increased

0.85 A
0.8 r/
® | "\ . |
0751 f‘\ Y «j \ / v\ |
o \u V2 | b W "\/
0.7 \u ' A vy
0.65

Aug 12 Aug 14 Aug 16 Aug 18 Aug 20 Aug 22 Aug 24

Before and After...

Before and After...

Before and After...

Before and After...

Before and After...

Future Work

e Bucket Size
e How to define a “Big” property

 Would a different eviction algorithm for the tracking table
be better?

