
IETF QUIC Deployment
Wei Sun

sunwei@kuaishou.com

Outline

• Background
• Deployment
• Test Results
• Future Work

Background – Why QUIC?

1. HTTP (1-RTT) 2. HTTPS (3-RTT) 3. HTTPS (session reuse，2-RTT)

TCP Issues QUIC Solution

1. Conn latency. HTTP: 1-RTT, HTTPS: 3-RTT, 2RTT(TLS 1.2) 1. First conn: 1-RTT，subsequent conn: 0-RTT (TLS 1.3)

2. HOL blocking 2. Multi-streams avoids HOL blocking

3. Encode hostId in DCID，LB routes packet by DCID3. 3G/4G/WIFI switching requires new connection

4. Retransmission ambiguity (inaccurate RTT) 4. Unique packet number for each packet

1. Structure DCID {hostId + thread_id}
2. LB decode DCID and route packet by
hostId 。

A few congestion control (e.g. BBR) requies RTT to calculate the cwnd.

(Images are from internet)

Outline

• Background
• Deployment
• System Architecture
• Connection Migration
• Congestion Control
• 0-RTT
• Others

• Test Results
• Future Work

Deployment - System Architecture

• Client: quic_sdk
• Server: ATS (quic

draft-12)
• Config: quic related

configuration

Deployment - Connection Migration

• Client SDK: re-send req when IP
address changes

• LB: route the UDP packet by
address in DCID

• Server:
• DCID generation: encode

hostId+ thread id in DCID
• Decode DCID and assign

UDPPacket to the thread by
thread id
• Support SO_REUSEPORT

Deployment - Congestion Control

• New Reno: Default CC (loss-based) in IETF QUIC

• BBR: Developed by Google in 2016, available in Linux 4.9+ and gQUIC
• Congestion window = max BW * min RTT * cwnd_gain
• Pacing rate = max BW * pacing_gain

• Our work:
• Integrated with BBR v1 (by Beixing Zuo)
• Configurable CC modes, BBR is the default CC on production.
• Test: BBR is 10x+ faster than New Reno for transferring 1MB data in 5%

packet-loss environment

Deployment - 0-RTT Support

• Stateless TLS session reuse: SSL_OP_NO_ANTI_REPLAY
• Store the PSK in APP storage for 1 week
• 0-RTT reused ratio: 79% ~ 98%

Deployment - Others

• Memory issue fix
• Performance optimization
• QUIC related metrics

Outline

• Overview
• Deployment
• Test Results
• Future Work

Test Results – A/B Test

• Serving partial user API traffic (HTTP & HTTPS) in production
• Success Ratio: increase +1.1pp

• Latency Result: Average HTTP (-28%), HTTPS (-48%)

(updated at 2019.4.27)

Type Avg Latency P25	Latency P50	Latency P75	Latency P90	Latency P95	Latency P99	Latency

HTTP -28% -10% -10% -8% -13% -31% -53%

HTTPS -48% -28% -58% -63% -61% -48% -52%

Test Results – Server Performance

• 1. Non-reused TLS conn: each request initiates a new TLS conn
• 2. Mixed-reused TLS conn: new conn / 0-RTT / reused conn = 1/10/50

RPS (K) Avg Latency (ms) P99 Latency(ms)

1. Non-reused TLS Conn 37.5 14.8 50.7

2. Mixed-reused TLS Conn 100.4 10.4 49.6

Outline

• Overview
• Deployment
• Test Results
• Future Work

Future Work

• Performance optimization
• UDP GSO, Zero copy
• TLS hardware acceleration

• Update to BBR v2
• Remove crypto for an internal use case
• Co-work with ats-quic and contribute some work

