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Background — Why QUIC?

1. Conn latency. HTTP: 1-RTT, HTTPS: 3-RTT, 2RTT(TLS 1.2) 1. First conn: 1-RTT, subsequent conn: 0-RTT (TLS 1.3)

2. HOL blocking 2. Multi-streams avoids HOL blocking
3. 3G/4G/WIFI switching requires new connection 3. Encode hostld in DCID, LB routes packet by DCID
4. Retransmission ambiguity (inaccurate RTT) 4. Unique packet number for each packet
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Deployment - System Architecture

* Client: qu | C_Sd Kk b e i api
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Deployment - Connection Migration

* Client SDK: re-send req when IP
address changes

* LB: route the UDP packet by
address in DCID

* Server:

* DCID generation: encode
hostld+ thread id in DCID

* Decode DCID and assign
UDPPacket to the thread by
thread i1d

* Support SO_REUSEPORT
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Deployment - Congestion Control

* New Reno: Default CC (loss-based) in IETF QUIC
* BBR: Developed by Google in 2016, available in Linux 4.9+ and gQUIC

* Congestion window = max BW * min RTT * cwnd_gain
* Pacing rate = max BW * pacing_gain

* Our work:
* Integrated with BBR v1 (by Beixing Zuo)
* Configurable CC modes, BBR is the default CC on production.

* Test: BBR is 10x+ faster than New Reno for transferring 1MB data in 5%
packet-loss environment



Deployment - O-RTT Support

» Stateless TLS session reuse; SSL OP NO ANTI REPLAY
 Store the PSK in APP storage for 1 week
* O-RTT reused ratio: 79% ~ 98%



Deployment - Others

* Memory issue fix
* Performance optimization
* QUIC related metrics
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Test Results — A/B Test

* Serving partial user API traffic (HTTP & HTTPS) in production
* Success Ratio: increase +1.1pp

* Latency Result: Average HTTP (-28%), HTTPS (-48%)

Avg Latency P25 Latency P50 Latency P75 Latency P90 Latency P95 Latency P99 Latency

HTTP -28% -10% -10% -13% -31% -53%

HTTPS -48% -28% -58% -63% -61% -48% -52%

(updated at 2019.4.27)



Test Results — Server Performance

* 1. Non-reused TLS conn: each request initiates a new TLS conn
* 2. Mixed-reused TLS conn: new conn / 0-RTT / reused conn = 1/10/50

_ RPS (K) Avg Latency (ms) P99 Latency(ms)
1. Non-reused TLS Conn
2. Mixed-reused TLS Conn 100.4 104 49.6
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Future Work

* Performance optimization
* UDP GSO, Zero copy
* TLS hardware acceleration

* Update to BBR v2
* Remove crypto for an internal use case
* Co-work with ats-quic and contribute some work



