IETF QUIC Deployment

Wei Sun
sunwei@kuaishou.com

Outline

* Background
* Deployment
* Test Results
* Future Work

Background — Why QUIC?

1. Conn latency. HTTP: 1-RTT, HTTPS: 3-RTT, 2RTT(TLS 1.2) 1. First conn: 1-RTT, subsequent conn: 0-RTT (TLS 1.3)

2. HOL blocking 2. Multi-streams avoids HOL blocking
3. 3G/4G/WIFI switching requires new connection 3. Encode hostld in DCID, LB routes packet by DCID
4. Retransmission ambiguity (inaccurate RTT) 4. Unique packet number for each packet
812 34567809 (1) 1 2+§+E+E+E+E+E+f+z+893123456789512345678931 | 00 Py
A fevtongestiorreontrol (e.gl*l L 22 0 L e e
|0[K[1[T]0|R R R| | Version (32)

SIS PN N S NS W RN R RN T P N ST T ST SRR ST ST S ST ST S S S S S S S S S S S S ST AT S S
P . |[DCIL(4)|SCIL(4) |

| I Destanaty, bbb bbb bbb bbb bbb e

tetet =ttt —t—t-FFf=F=F| Destination Connection ID (0/32..144) ool

| o Vo e e At et e
S—— Source Connection ID (0/32..144) .o
ettt = = b e e e e e R e e e
| Prot| Payload Length (i) .
t—t—t—t—t—t—t—t—t—t—toboboto bbb bbbttt bt bttt =t
+_+-+_+_+-+-+_+-+-+-+_+_+-| Packet Number (8/16/32)]
t—t—t—t—t—t—t—t—t—t—t—F—FF—F—F—F—F—F—F—F—F—F—t—F—+ =t =+ =t =+ —+—+—

Figure| Payload (*) aa
it SN S S T S S S S S S S S

Firgal id)

Finished

. Figure 1l: Long Header Format
(Images are from internet) —

Outline

* Deployment
* System Architecture
* Connection Migration
* Congestion Control
* O-RTT
* Others

Deployment - System Architecture

* Client: qu | C_Sd Kk b e i api

Andro

* S e rve r ATS (q u I C 1.1 HTTP, HTTPS over TCP (:80, :443) 2.1 HTTP over QUIC (:8000) il Ll e
draft-12) — RIS -
Load Balancer (TCP: 80,443; UDP: 8000) ';})](1)

* Config: quic related o
configuration e ——

Deployment - Connection Migration

* Client SDK: re-send req when IP
address changes

* LB: route the UDP packet by
address in DCID

* Server:

* DCID generation: encode
hostld+ thread id in DCID

* Decode DCID and assign
UDPPacket to the thread by
thread i1d

* Support SO_REUSEPORT

o=
llDl

UDP Packet

Load Banlancer (:8000)

DCID <thread-1, RS‘_/ <thread-2, RS-N>
RS-1 RS-N
NIC
+ + ‘ * UDP Packet
ATS
Reuseport

UDP Thread - 1

UDP Thread - 2

UDP Thread - 3

UDP Thread -N

-~

DCID < thr&rkas-b/\ DCWad—Z ,RS-2
X K DC

< thread-3 , RS-3>

Worker Thrzay/

Net Thread - 1

Net Thread - 2

Net Thread - 3

Net Thread - N

Deployment - Congestion Control

* New Reno: Default CC (loss-based) in IETF QUIC
* BBR: Developed by Google in 2016, available in Linux 4.9+ and gQUIC

* Congestion window = max BW * min RTT * cwnd_gain
* Pacing rate = max BW * pacing_gain

* Our work:
* Integrated with BBR v1 (by Beixing Zuo)
* Configurable CC modes, BBR is the default CC on production.

* Test: BBR is 10x+ faster than New Reno for transferring 1MB data in 5%
packet-loss environment

Deployment - O-RTT Support

» Stateless TLS session reuse; SSL OP NO ANTI REPLAY
 Store the PSK in APP storage for 1 week
* O-RTT reused ratio: 79% ~ 98%

Deployment - Others

* Memory issue fix
* Performance optimization
* QUIC related metrics

Outline

* Test Results

Test Results — A/B Test

* Serving partial user API traffic (HTTP & HTTPS) in production
* Success Ratio: increase +1.1pp

* Latency Result: Average HTTP (-28%), HTTPS (-48%)

Avg Latency P25 Latency P50 Latency P75 Latency P90 Latency P95 Latency P99 Latency

HTTP -28% -10% -10% -13% -31% -53%

HTTPS -48% -28% -58% -63% -61% -48% -52%

(updated at 2019.4.27)

Test Results — Server Performance

* 1. Non-reused TLS conn: each request initiates a new TLS conn
* 2. Mixed-reused TLS conn: new conn / 0-RTT / reused conn = 1/10/50

_ RPS (K) Avg Latency (ms) P99 Latency(ms)
1. Non-reused TLS Conn
2. Mixed-reused TLS Conn 100.4 104 49.6

Outline

* Future Work

Future Work

* Performance optimization
* UDP GSO, Zero copy
* TLS hardware acceleration

* Update to BBR v2
* Remove crypto for an internal use case
* Co-work with ats-quic and contribute some work

