

Name: Sheriffo Ceesay
Project Name: Benchmark Module for Apache Gora

Issue Link: ​https://issues.apache.org/jira/browse/GORA-532
Email: sneceesay77@gmail.com

Introduction and Background

The ability to use Object Oriented Programming to interact with relational databases
using Object Relational Model frameworks such as Hibernate and Apache Open JPA
has greatly simplified their integration. With the advent to big data where there is no
common standard or strict schema definition, it becomes impossible or challenging to
deploy traditional ORM approaches to big data stores.

Apache Gora is an opensource framework which aims to give users an easy-to-use
in-memory data model and persistence for big data frameworks with data store specific
mappings. The overall goal for Apache Gora is to become the standard data
representation and persistence framework for big data by providing easy to use Java
API for accessing data agnostic of where the data is stored. It uses Apache Avro for
data serialisation and depends on mapping files specific to each datastore.

Apache Gora supports persisting data to various NoSQL store types. It supports column
stores like HBase and Cassandra, key-value stores like Aerospike and Amazon
DynamoDB and document stores like MongoDB and CouchDB. It also supports
multi-model NoSQL databases like OrientDB. There is support for Apache Hadoop and
Apache Spark for analysing data.

Benchmarking is the process of measuring the performance of a system in order to get
insight into its functionality and general performance characteristics. This is normally
achieved by executing representative workloads. Metrics like execution time, storage
and CPU usage are often collected for analysis. Example of a benchmark standard in
the RDBMS world is the TPC-DS benchmark [1]. Recently development in NoSQL and
big data systems prompted researchers and engineers to come up with various
benchmarking frameworks. Popular examples of these systems are ​Yahoo!’s Cloud
Serving Benchmark YCSB++ [2], Apache Accumulo Benchmarking [3] and HiBench [4],
Spark Bench [5].

https://issues.apache.org/jira/browse/GORA-532

The Problem Statement

The idea is to develop a Benchmark module that will help to identify and understand the
various performance characteristics of Apache Gora. It will also help to identify the
overhead incurred by Gora compared to the use of native NoSQL systems. This will
help in fixing bug and aid performance improvement. The performance characteristics
may range from execution time and resource utilisation. The proposed module could be
used to benchmark and compare native implementation vs Apache Gora
implementation.

Proposed Architecture and Solution

There are three main components in the above diagram.

1. Setup will configure the benchmarking module to communicate with Gora.
Workloads are the programs or operation that will be executed on the Gora
platform. We will include CRUD operational some stress test operations like
sorting. The pipeline will also include functionality to generate synthetic data and
load them into the datastore for the workloads to use.

2. Benchmark Module: This would be the main component. The module will send
operations to Gora and metrics will be connected after the completion of an
operation. For a start, results can be written to an organised text file.

3. Apache Gora: A setup of Gora targeting the installed NoSQL datastores.

Since Gora has implemented a variety of NoSQL database implementation, I think, we
may not be able to include all these NoSQL databases in this project. So we could

target one or two databases in our first implementation. Subsequently, we could
replicate this approach to other databases in the future.

Proposed Implementation idea

The implementation basically has to implement the methods defined in the
YCSBs DB abstract class [7]. Therefore for each NoSQL database
implemented by Gora, the solution would entail using Gora API to define a
concrete implementation for the methods defined below. See sample
skeletal code below and the mapping of YCSB DB and DataStore
Interfaces.

public class GoraBenchmarkClient extends DB{

public GoraBenchmarkClient(){}

init(...) // handles connecting to the database and any setup issue
read(...) //read a single record
scan(...) //read a range of records
update(...) //update record(s)
insert(...) //Insert a record
delete(...) //delete a single record

}

Mapping of Gora ​DataStore​ Interface to YCSB ​DB​ interface

Gora DataStore Interface YCSB DB Interface

initialize(Class<K> keyClass, Class<T>
persistentClass, Properties properties)

init()

T get(K key), get(K key,) int read(String table, String key, Set<String>
fields, Map<String, ByteIterator> result)

Result<K, T> execute(Query<K, T>
query)

int scan(String table, String startkey, int
recordcount, Set<String> fields,
Vector<HashMap<String, ByteIterator>>
result);

put(K key, T obj) int update(String table, String key, Map<String,
ByteIterator> values)

put(K key, T obj) int insert(String table, String)

boolean delete(K key) int delete(String table, String key);

Deliverables

1. Gora-Benchmark module integrated with YCBS that can be used to run
workloads `on Gora and return metrics like execution time. The following
benchmark operations will be included in this work.

a. read()
b. scan()
c. update()
d. delete()
e. sortOperation() → suggested by Kevin

2. A comparison of Gora vs Native NoSQL implementation. Example
Gora-MongoDB implementation vs native MongoDB implementation.

3. Documentation on the usage of the system.
4. Reusable scripts for running the benchmarks.
5. A paper to submit to ApacheConf

Timeline

Task Start End

1. Community Bonding Period
a. Understanding the internals of Apache Gora.
b. Setup a local environment
c. Explore Apache Gora source code
d. Clarify and furnish the requirements and design

I have already started looking into Gora internals, following
tutorials, understanding the code base and the collaboration
methods. I successfully, followed the LogAnalyser tutorial
using HBase as the backend and modified the settings to use
a local MongoDB installation as well. Currently, I am
attempting to fix
https://issues.apache.org/jira/projects/GORA/issues/GORA-56
5

Now 26th May

Develop the basic functionality of the core module, test and
improve.

27 May 23 June

Phase 1 Evaluation 24 June 28 June

https://issues.apache.org/jira/projects/GORA/issues/GORA-565
https://issues.apache.org/jira/projects/GORA/issues/GORA-565

Improve the basic functionality by adding more benchmark
operations, compare Gora and Native implementations.

29 June 21 July

Phase 2 Evaluation 22 July 26 July

Finalise the functionality and provide documentation 27 July 18 Aug

Final Week: Submit final work for evaluation 19 Aug 26 Aug

Availability
This project is related to what I am currently doing my PhD so I will be able to dedicate
30 hrs/week hours to this. I have already discussed this with my supervisor and he
welcomed the idea.
I may have two possible trips as indicated in the table below.

15 - 17 July Annual CS School trip to The Burn Confirmed

3 - 12 August I may attend a conference in Japan Not yet confirmed

Contribution to Apache Gora
https://issues.apache.org/jira/browse/GORA-564

About Me

I am a third year PhD student at the University of St Andrews, UK. My research focuses
on Benchmarking and Performance Modelling of Big Data Applications. I have worked
extensively with various Benchmarking frameworks like HiBench[2], BigDataBench[3]
and read a lot of papers about their approach and implementation. I have also
developed a custom benchmarking tool for MapReduce jobs which obtains the
execution time of all sub-phases e.g. (Read, Map, Collect, Spill, Merge, Shuffle, Reduce
and Write).

I wrote a paper in 2017 that focuses on simplifying the deploying of benchmark tools
titled Plug and Play Bench: Simplifying Benchmarking using Containers [6].

I am conversant with MapReduce and Apache Spark. I am currently modelling the
performance of data flow with cycles pattern. Apache Spark is an example of such a
pattern.

As part of my master's degree program, I did a six months internship with Christie
National Health Service in Manchester. My main responsibility was to investigate and

https://issues.apache.org/jira/browse/GORA-564

gauge the possibility of moving or replicating their various RDBM systems to a NoSQL
solution and provide a simple interface that would help them aid this movement. I solved
this challenge by merging and dumping the selected databases into MongoDB. This
project, including the source codes, are totally propriety.

Finally, I had always wanted to actively contribute to open source projects and I am
sure. this is a great opportunity for me to get started.

Reference
[1] ​Nambiar, R.O. and Poess, M., 2006, September. The making of TPC-DS. In ​Proceedings of the 32nd
international conference on Very large databases​ (pp. 1049-1058). VLDB Endowment.
[2] ​Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R. and Sears, R., 2010, June. Benchmarking
cloud serving systems with YCSB. In ​Proceedings of the 1st ACM symposium on Cloud computing​ (pp.
143-154). ACM.
[3]​ Sen R, Farris A, Guerra P. Benchmarking apache accumulo bigdata distributed table store using its
continuous test suite. In2013 IEEE International Congress on Big Data 2013 Jun 27 (pp. 334-341). IEEE.
[4]​ Huang S, Huang J, Dai J, Xie T, Huang B. The HiBench benchmark suite: Characterization of the
MapReduce-based data analysis. In2010 IEEE 26th International Conference on Data Engineering
Workshops (ICDEW 2010) 2010 Mar 1 (pp. 41-51). IEEE.
[5]​ Li, M., Tan, J., Wang, Y., Zhang, L. and Salapura, V., 2015, May. Sparkbench: a comprehensive
benchmarking suite for in-memory data analytic platform spark. In ​Proceedings of the 12th ACM
International Conference on Computing Frontiers​(p. 53). ACM.
[6] Ceesay, S., Barker, A. and Varghese, B., 2017, December. Plug and play bench: Simplifying big data
benchmarking using containers. In ​2017 IEEE International Conference on Big Data (Big Data)​ (pp.
2821-2828). IEEE. (​https://ieeexplore.ieee.org/abstract/document/8258249​)
[7] https://github.com/brianfrankcooper/YCSB/wiki/Adding-a-Database

https://ieeexplore.ieee.org/abstract/document/8258249

