
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Software Design Document 
 

Benchmark Module Apache Gora 
 

Sheriffo Ceesay 
 

GSoC 2019 
 

28th May 2019  
 
  



Introduction: 
This GSoC project is to create a benchmark module for Apache Gora project. The 
system should be able to run benchmarks on the various data store modules of the 
project. Common benchmarks like the CRUD operations should be supported.  
 
This design document covers in detail the designs used or planned to use in the 
implementation process. It follows the original proposal submitted in the GSoC selection 
process.  
 
Purpose:  
The main purpose of this document is to provide an in-depth explanation of the design 
of the Apache Gora benchmark module, created for the Apache Gora Project. The 
document is technical and hence intended for programmers which includes my mentors 
and the entire Gora community as a guide for the project implementation. Finally, the 
document could also be used as a guideline by engineers who would work on this 
module in future.  
 
Scope: 
The document provides a detailed description of the architecture of the benchmark 
module. It contains use cases and class diagrams to see how users and objects in the 
implementation interact respectively. 
 
Definitions, Acronyms, Abbreviations 
YCSB Yahoo! Cloud Service Benchmark 
DataStore:- Apache Gora implementation of a NoSQL database. This can be MongoDB, 
HBase, e.t.c.  
keyClass:-The type of the key for the value to be inserted in the datastore. 
persistenceClass:-The type of the object to be inserted.  
 
 
Design Consideration:  
 
Assumption:  
The benchmark-module is intended for technical users or engineers who want to 
measure and understand the efficiency of Apache Gora.  
 
System Environment and Technologies Used 
The module interacts with the entire Apache Gora project. The programming language 
used is Java. It also makes use of YCSB. 
 
 
 
 
 
 



Architecture and System Design 
 
The diagram below shows a high-level view of the actors to interact with the module. 
First, a user will set up the module and define workload using a configuration file. The 
workload is then executed using the benchmark module. The benchmark module runs 
the benchmark on the target data store and returns metrics upon completion.  
  

 
 
 
Preliminary Class Diagram 
 
This is the initial class diagram, however, I will update this I move on.  
 



 
 
 
Sequence Of Operations: 
  

1. An actor or a user configures the DataStore to benchmark. This is done by 
editing the gora.properties file.  

2. An actor configures the workload to execute. Since we are using YCSB, we can 
use YCSB workload configuration mechanism to achieve this.  

3. The default keyClass is java.lang.String and the default persistenceClass is 
generated.User.  

4. Actor executes load operation to populate the DataStore with some dataset.  
a. By default, the load operation has 1000 records and 10 fields 
b. These settings can be changed using the workload settings.  

5. Actor executes the transaction.  
 
 
 
Extend YCSB and provide an implementation for Apache Gora. 
 
YCSB is currently the defacto or state-of-the-art benchmark platform for NoSQL 
databases. It provides convenient configurable methods to generate and load 



databases with synthetic data. It also provides mechanisms to run read, update, scan 
and delete transactions on the loaded dataset. At the end of each operation, various 
metrics are generated for analysis.  
 
To extend YCSB the method on the second column of the table below must be 
implemented.  
 
Mapping of Gora ​DataStore​ Interface to YCSB ​DB​ interface 
 

Gora DataStore Interface  YCSB DB Interface 

initialize(Class<K> keyClass, Class<T> 
persistentClass, Properties properties) 

init() 

T get(K key), get(K key, )  int read(String table, String key, Set<String> 
fields, Map<String, ByteIterator> result) 

Result<K, T> execute(Query<K, T> 
query) 

int scan(String table, String startkey, int 
recordcount, Set<String> fields, 
Vector<HashMap<String, ByteIterator>> 
result);  

put(K key, T obj)  int update(String table, String key, Map<String, 
ByteIterator> values) 

put(K key, T obj)  int insert(String table, String ) 

boolean delete(K key)  int delete(String table, String key); 
 
 
Testing  
The Java unit testing approach will be used to test the functionality.  
 
References: 
Benchmark-Module Proposal  
Apache Gora Project 
YCSB Project 
 

 

https://docs.google.com/document/d/1djelY4yVwTuWPA310E_JBinOPnt5PJh3x67z0ZxgBLg/edit
https://gora.apache.org/
https://github.com/brianfrankcooper/YCSB

