
LDAP & Cocoon
Real life, down-to-earth Cocoon and LDAP

a talk by :

Ross McDonald
&

Jeremy Quinn
@

CocoonGT 2006
I want you to believe every word I say
I want you to believe every thing I do

Toots and the Maytals ♬

1

Wait for the audience to calm down :-)

Why this talk ?

LDAP The missing manual
? ??

??? ?

? ??
??

!! # !!¿¿ !! ??

2

Ross: Can you guess who is who ?
Jeremy: Why are we doing this talk? (because Ross cried like a baby when he saw the state of the
docs)
Ross: it is geared to people like us.. who want to create an 'enabling' framework, so others can get
on with the work, it does not take a vastly experienced cocoon developer to do this, when there are
well documented examples
Ross: How are we qualified? We have both built registration systems using LDAP and Cocoon
Ross: We are just typical users ... now that we have fought our way to an implementation, we want
to make it easy for others. And it never hurts to have a little more documentation around!

What is LDAP

Lightweight Directory Access
Protocol

A standard for accessing
directory services over networks

A modern lightweight successor
to X500, WHOIS etc etc

3

Very brief definition of what LDAP is

Ross: LDAP stands for “Lightweight Directory Access Protocol”
Jeremy: LDAP is not a database, it is a protocol for accessing directory information
Ross: It turns out that LDAP is really not as complicated as you might first expect, my understanding
and opinion has totally changed on it over the last four months.. initially I was very skeptical.. now I
have found myself championing it in the workplace!

When and why

Hierarchical Data

Distributed Data

Store Almost Anything

Fast, Scalable, Searchable

should I use LDAP ?

4

Ross: Just launched a project with a massive emphasis on LDAP in collaboration with Sourcesense,
they provided the LDAP and data setup, we had to write the code to integrate it into our websites
Ross: It turns out LDAP is very good at authentication, and personalisation

Jeremy: when I worked for Luminas, we used LDAP on a project for a big university etc.

dc=ldap, dc=cocoongt, dc=org

ou=addressbook

ou=locations

ou=directors

ou=muppets

cn=Jeremy Quinn

cn=Ross McDonald

cn=Conference Room

cn=Hackathon Room

cn=WIFI Router

cn=Coffee Machine

cn=Arjé Cahn

ou=devices

Hierarchical Data

An address book comprising
multiple departments

Departments comprising
multiple contact entries

Contact entries could contain
more hierarchy

5

Ross: its just not fun creating and maintaining hierarchies in RDB
Ross: In our app we chose to use multi-level data because this is something worth documenting
within LDAP, it is not necessarily intuitive... In the course of our most recent project, I had to
explain the workings of LDAP and working with its data to several colleagues, ranging from project
managers to designers, and understanding LDAP itself proved the biggest hurdle... Later on, we
will look at how simple it is in fact to work with structured data.

dc=ldap, dc=cocoongt, dc=org

ou=addressbook

ou=directors

ou=muppets

ou=members

ou=comitters

dc=ldap, dc=apache, dc=org

ou=addressbook

Distributed Data

Aggregate datasources

Reference external sources

Load Balance

Replicate automatically

6

Jeremy: you can join different info sources together, here is a conceptual example of adding the
ou=comitters group to our addressbook
Ross: easier replication than MySQL, which forces storage to be in-memory

Store Almost Anything

UTF-8 Strings, Booleans,
Numbers, Phone Numbers,
Dates, Email Addresses,
Postal Addresses, Certificates,
Passwords, Image, Audio,
References, Directory Paths,
URLs, Countries, etc. etc.

Multivalued Attributes

7

Jeremy: textual, binary, numeric etc.

Mean Machine

Fast

Scalable

Searchable

Standards-based

BASE : Where?
SCOPE : How deep?
FILTER : Find What?
 { equality
 presence
 substring
 < and/or >
 like
 etc. }
RETURN : Which Attrs?

Searching

8

Ross: easy access from a given node instantly, no need to do lots of Table joins
Ross: We had a 23gig instance for just our UK data
Jeremy: LDAP directories are heavily optimized for read performance
Jeremy: Above is an example of the kind of criteria you can use to describe a search
Ross: LDAP is such an open standard, and now with SyncML data may be read from many different
devices, for gadget freaks like me, thats fun! You can have one central contacts and calendaring
system, synchronising to all your devices.

What LDAP is NOT

Not well documented

Not a replacement for SQL

Not so good for dynamic data

9

Quickly dispel some myths
Ross: It is more difficult to setup that an RDBs
Jeremy: Hang on, it is much easier than that !!
Ross: Only because I worked it out and told you how, you feckwit :-)

Examples of Googling

Google results

10

Just a quick example of what was available...

Ross: So unfortunately, the web was lacking a beginning to end example, and what there was, had
some inaccuracies.. don’t worry, we fixed up the javadocs!

A Contrived Example

Sample CRUD Application

JXT + CForms + Flowscript

Uses LDAPEntryManager

Written in one day

create remove update delete

11

Jeremy: demo of adding a record, browsing the app, show a search in AddressBook.app

Getting Started

Define your Structure

Configure your Server

Populate your Server

Alphabet Soup

why might this be perceived as difficult ?

12

Ross: lack of documentation
Jeremy: SORRY !!!! ;)

Define your Structure

dn: dc=ldap,dc=cocoongt,dc=org
objectClass: top
objectClass: dcObject
objectClass: organization
dc: cocoongt
o: Cocoon GetTogether LDAP

dn: ou=addressbook,dc=ldap,dc=cocoongt,dc=org
objectClass: top
objectClass: organizationalUnit
ou: addressbook
dn: ou=muppets,ou=addressbook,dc=ldap,dc=cocoongt,dc=org
objectClass: top
objectClass: organizationalUnit
ou: muppets
dn: ou=directors,ou=addressbook,dc=ldap,dc=cocoongt,dc=org
objectClass: top
objectClass: organizationalUnit
ou: directors

13

Jeremy: Many pre-defined Schemas, DataTypes and Attributes for specific tasks
Ross: We chose a standard schema that enables connection to multiple remote entities with no
configuration...EMail Clients, addressbooks

Configure your Server

##
slapd.conf file for Addressbook Sample
##

include /etc/openldap/schema/core.schema
include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/nis.schema
include /etc/openldap/schema/inetorgperson.schema
include /etc/openldap/schema/misc.schema
include /etc/openldap/schema/samba.schema
include /etc/openldap/schema/apple.schema
pidfile /var/run/slapd.pid
argsfile /var/run/slapd.args
allows bind_v2
schemacheck off

database bdb
directory /var/db/openldap/openldap-data/
suffix "dc=ldap,dc=cocoongt,dc=org"
rootdn "dc=ldap,dc=cocoongt,dc=org"

MD5 hash of 'secret'
rootpw {SSHA}G0ul9DgKDPWKoQnxIQV6VNvuIu8Bfboz

14

Jeremy: This is from the sample App we provide, it is a setup for MacOSX that has OpenLDAP
already installed but not running.

Ross: Once again, things are never straight forward, after some research you eventually realise that
the mac instance of openldap is configured to dislike plain text passwords :-)

Populate your Server
sample data to fill the addressbook

dn: cn=Rossputin McDonald, ou=muppets, ou=addressbook, dc=ldap, dc=cocoongt, dc=org
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Rossputin McDonald
gn: Rossputin
sn: McDonald
mail: rossputin@rossputin.org
physicalDeliveryOfficeName: Cocoon GetTogether LDAP
postalAddress: PO BOX 55555
l: Newbury
st: Berkshire
postalCode: RG19 4QL
telephoneNumber: 666
facsimileTelephoneNumber: 666
pager: 666
mobile: 666
homePhone: 666
ou: muppets

dn: cn=Jeremy Quinn, ou=muppets, ou=addressbook, dc=ldap, dc=cocoongt, dc=org
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Jeremy Quinn
gn: Jeremy
sn: Quinn
mail: jeremy@apache.org
physicalDeliveryOfficeName: Cocoon GetTogether LDAP, Muppet Department
postalAddress: PO BOX 666666
l: Brixton
st: London
postalCode: SW2
telephoneNumber: 77777777
facsimileTelephoneNumber: 667777776
pager: 7676767
mobile: 677677677
homePhone: 76776776
ou: muppets

15

Jeremy: This is some sample data from the App we provide, to pre-populate the repository
Jeremy: Here we use the LDIF - text format, you may also use the XML format - DSML

mailto:rossputin@rossputin.org
mailto:rossputin@rossputin.org
mailto:jeremy@apache.org
mailto:jeremy@apache.org

Alphabet Soup

Many Attributes (RFC 1779)
 cn : Common Name
 gn : Given Name
 sn : Surname
 mail : Email Address
 o : organisation
physicalDeliveryOfficeName : Department Name
 postalAddress : Address Line 1
 l : Address Line 2
 st : Address Line 3
 postalCode : Post Code
 c : Country
 telephoneNumber : Office Number
 facsimileTelephoneNumber : Fax Number
 pager : Pager Number
 mobile : Mobile Number
 homePhone : Home Number
 ou : Organisational Unit
 dc : Domain Component
 dn : Distinguished Name

X.500 Varieties

16

Jeremy: There are many pre-defined Attributes, they come from X.500
Ross: How many designers and developers looking at LDAP for the first time are going to make
anything meaningful of all this ?

LDAP Component
using it from your own code

Which Component should I use?

Adding the Naming Block

Adding the LDAPEntryManager

Code Hierarchy

Calling the LDAPEntryManager

17

Ross: Discuss the merits of the different options in Cocoon ? After some research, and a chat with
Jeremy, we chose to use the LDAPEntryManager, as it offered a more flexible solution

Jeremy: runs through the setup

The Naming Block

#-----[dependency]: "itext" depends on "xsp" (for samples).
include.block.itext=false
include.block.jfor=false
include.block.jsp=false
#-----[dependency]: "linkrewriter" depends on "xsp".
include.block.linkrewriter=false
#-----[dependency]: "lucene" is needed by "querybean".
include.block.lucene=false
include.block.midi=false

#include.block.naming=false
#-----[dependency]: "ojb" depends on "databases" (for samples), "forms" (for samples),
"hsqldb" (for samples), "xsp" (for samples).
#-----[dependency]: "ojb" is needed by "javaflow", "portal", "querybean".
include.block.ojb=false
include.block.paranoid=false
include.block.poi=false

local.blocks.properties

now recompile

18

Setting up the naming block

LDAPEntryManager

<component
role="org.apache.cocoon.components.naming.EntryManager"
class="org.apache.cocoon.components.naming.LDAPEntryManager"
logger="flow.ldap">

 <parameter name="ldap-host" value="ldap://localhost:389"/>
 <parameter name="ldap-base"
 value="ou=addressbook,dc=ldap,dc=cocoongt,dc=org"/>
 <parameter name="ldap-user" value="dc=ldap,dc=cocoongt,dc=org"/>
 <parameter name="ldap-pass" value="secret"/>

</component>

Add the Component to cocoon.xconf

19

Setting up the Component

explain the base context, we do not need to use ou=addressbook inside the app

flow.js <-- (DisplayModel) --> AddressbookManager.js <-- (Map of Arrays) --> LDAPEntryManager <-- (javax.naming.directory.Attributes) --> javax.naming.*

flow.js

Display Model

Map of Arrays

javax.naming.directory.Attributes

AddressbookManager.js

LDAPEntryManager

javax.naming.*

Code Hierarchy

var AddressbookManager = {
binding: {

firstname : "givenName",
lastname : "sn",
email : "mail",
deptName : "physicalDeliveryOfficeName",
address1 : "postalAddress",
address2 : "l",
address3 : "st",
postcode : "postalCode",
ophone : "telephoneNumber",
fphone : "facsimileTelephoneNumber",
pager : "pager",
mphone : "mobile",
hphone : "homePhone",
dept : "ou"

}
}

20

Flow layer, talks to AddressBook Application Layer, which talks to Component
Application layer converts between Display Names and LDAP Attribute Names
The LDAPEntryManager provides an extremely simplified set of common LDAP Methods and Data
Types, to simplify access from FlowScript

Get, Use, Dispose

function getPerson() {
var uid = cocoon.parameters["dn"];
var entrymanager = cocoon.getComponent(EntryManager.ROLE);
try {

var person = AddressbookManager.getPerson(
entrymanager, uid

);
cocoon.sendPage(cocoon.parameters["screen"], {person: person});

} catch (e) {
print(e);
throw(e);

} finally {
cocoon.releaseComponent(entrymanager);

}
}

21

Ross: So.. how do we use Jeremy’s component within Cocoon? Flowscript!

First we create an instance of the LDAPEntryManager component. Then we attempt to use it in a try
catch block, before releasing resources in a ‘finally’ clause

Easy right? Why then have we pushed this part of the talk towards the end, into the intermediate
section ?

Well flowscript is easy, its javascript... but what about those objects we get back from calls to Java..
our experience showed that many developers found it hard to know what to expect, sometimes an
Array, sometimes a hashmap... Also, there is often a lack of structure in javascript, and spaghetti
code can result, what is harder but infinitely better is to take time to structure the code, make it
maintainable, provide a framework

Get a List of People
/**

Get a list of people from a department in the addressbook

@param entrymanager the LDAP Component
@param department the organisationalUnit to look in eg. ou=muppets
@return a JavaScript Array of JavaScript person Objects

*/
AddressbookManager.getPeople = function(entrymanager, department) {

var matchAttrs = new HashMap(), people = [];
department = department ? department : "";
// prepare the query
matchAttrs.put(

"objectClass", this.singleAttribute("person")
);
// perform the query
var results = entrymanager.find(department, matchAttrs);
// convert to display model
var it = results.keySet().iterator(), key;
while (it.hasNext()) {

key = it.next();
people[people.length] = this.bindPerson(key + "," + department, results.get(key));

}
return people;

}

22

Ross: Here we see a sample of finding with the LDAPEntryManager component. We pass a filter to
it, requesting results of type objectClass=person. We specify a department to look in, and return all
the people found. We can put some pretty powerful filters in here in the matchAttrs hashmap.
Most of this code is our ‘framework’, designed to make the designers / developers lives easier...
very little of it is core to the component.

Manipulating Data

var res = em.get(”ou=muppets”);

var res = em.get(”cn=Jeremy
Quinn, ou=muppets”);

cn=Jeremy Quinn, ou=muppets,
ou=addressbook, dc=ldap,

23

Ross: Our ldap.base is ou=addressbook,dc=ldap,dc=cocoongt,dc=org, the first get will return info
on the muppets department

Ross: Next we grab a contact from the muppets department... creating and updating are all as
simple, we can jump to anywhere in the tree by working from right to left

Ross: Our flowscript, using Jeremy’s LDAP Cocoon component exploits this, it is just not
immediately obvious until you have seen an example... no joins, simple

Empowering
developers and designers to build LDAP Applications

Javascript skills are on the up
(Ajax, Dojo etc)

The cost of creating LDAP apps is
down

Well thought out frameworks are
very productive

24

Ross: the key - flowscript, javascript skills are on the up, because of the Ajax/Dojo revolution
Ross: javascript is easier, developers are a readily available resource
Ross: We have LDAPEntryManager, all it takes then is to create a nice OO framework, and designers/
developers can roll out LDAP web apps rapidly and effectively

Tips and Tricks
for large scale LDAP instances

come see us after the talk

look on the Cocoon Wiki to find
our talk, sample app and tips

25

http://wiki.apache.org/cocoon/GT2006Notes
http://wiki.apache.org/cocoon/GT2006Notes

