
Hadoop Distributed File System

Dhruba Borthakur
June, 2007



Goals of HDFS

● Very Large Distributed File System
– 10K nodes, 100 million files, 10 PB

● Assumes Commodity Hardware
– Files are replicated to handle hardware failure
– Detect failures and recovers from them

● Optimized for Batch Processing
– Data locations exposed so that computations 

can move to where data resides
– Provides very high aggregate bandwidth



Distributed File System

● Single Namespace for entire cluster
● Data Coherency

– Write-once-read-many access model 
– Client does not see a file until the creator has 

closed it
● Files are broken up into blocks

– Typically 128 MB block size
– Each block replicated on multiple DataNodes

● Intelligent Client
– Client can find location of blocks
– Client accesses data directly from DataNode



  4

Secondary
NameNode

Client

HDFS Architecture

NameNode

DataNodes

1. file
name

2. BlockId, DataNodes

3.Read data

Cluster Membership

Cluster Membership

NameNode : Maps a file to a file-id and list of MapNodes
DataNode  : Maps a block-id to a physical location on disk
SecondaryNameNode: Periodic merge of Transaction log



Functions of a NameNode

● Manages File System Namespace
– Maps a file name to a set of blocks
– Maps a block to the DataNodes where it resides 

● Cluster Configuration Management
● Replication Engine for Blocks



NameNode Meta-data

● Meta-data in Memory
– The entire metadata is in main memory
– No demand paging of FS meta-data

● Types of Metadata
– List of files
– List of Blocks for each file
– List of DataNodes for each block
– File attributes, e.g creation time, replication fac-

tor
● A Transaction Log

– Records file creations, file deletions. etc



DataNode

● A Block Server
– Stores data in the local file system (e.g. ext3)
– Stores meta-data of a block (e.g. CRC)
– Serves data and meta-data to Clients

● Block Report
– Periodically sends a report of all existing blocks 

to the NameNode
● Facilitates Pipelining of Data

– Forwards data to other specified DataNodes



Block Placement

● One replica on local node
● Another replica on a remote rack
● Third replica on local rack
● Additional replicas are randomly placed



HeartBeats

● DataNodes send heartbeat to the NameN-
ode

● NameNode used heartbeats to detect 
DataNode failure



Replication Engine

● NameNode detects DataNode failures
– Chooses new DataNodes for new replicas 
– Balances disk usage
– Balances communication traffic to DataNodes 



Data Correctness

● Use Checksums to validate data
– Use CRC32

● File Creation
– Client computes checksum per 512 byte
– DataNode stores the checksum 

● File access
– Client retrieves the data and checksum from 

DataNode
– If Validation fails, Client tries other replicas



NameNode Failure

● A single point of failure
● Transaction Log stored in multiple directories

– A directory on the local file system
– A directory on a remote file system (NFS/CIFS)



Data Pipelining

● Client retrieves a list of DataNodes on which 
to place replicas of a block

● Client writes block to the first DataNode
● The first DataNode forwards the data to the 

next DataNode in the Pipeline
● When all replicas are written, the Client 

moves on to the next block in file



Secondary NameNode

● Copies FsImage and Transaction Log from 
NameNode to a temporary directory

● Merges FSImage and Transaction Log into a 
new FSImage in temporary directory

● Uploads new FSImage to the NameNode
– Transaction Log on NameNode is purged



User Interface

● Command for HDFS User:
– hadoop dfs -mkdir /foodir
– hadoop dfs -cat /foodir/myfile.txt
– hadoop dfs -rm /foodir myfile.txt

● Command for HDFS Administrator
– hadoop dfsadmin -report
– hadoop dfsadmin -decommission datanodename

● Web Interface
– http://host:port/dfshealth.jsp



Useful Links

● HDFS Design:
– http://lucene.apache.org/hadoop/hdfs_design.html

● HDFS API:
– http://lucene.apache.org/hadoop/api/


