
Introduction to Hadoop

Owen O’Malley
Yahoo!, CC&DI

owen@yahoo-inc.com

EBIG – Oct 2008

Who Am I?

•  Two Different Hats
–  Yahoo! Architect on Hadoop Map/Reduce

•  Design, review, and implement features in Hadoop
•  Working on Hadoop full time since Feb 2006

–  VP of Apache for Hadoop
•  Chair of the Hadoop Program Management Committee
•  Responsible for

–  Building the Hadoop community
–  Interfacing between the Hadoop PMC and the Apache Board

EBIG – Oct 2008

Problem

•  How do you scale up applications?
–  100’s of terabytes of data
–  Takes 11 days to read on 1 computer

•  Need lots of cheap computers
–  Fixes speed problem (15 minutes on 1000 computers), but…
–  Reliability problems

•  In large clusters, computers fail every day
•  Cluster size is not fixed

•  Need common infrastructure
–  Must be efficient and reliable

EBIG – Oct 2008

Solution

•  Open Source Apache Project
•  Hadoop Core includes:

–  Distributed File System - distributes data
–  Map/Reduce - distributes application

•  Written in Java
•  Runs on

–  Linux, Mac OS/X, Windows, and Solaris
–  Commodity hardware

EBIG – Oct 2008

Commodity Hardware Cluster

•  Typically in 2 level architecture
–  Nodes are commodity PCs
–  40 nodes/rack
–  Uplink from rack is 8 gigabit
–  Rack-internal is 1 gigabit

EBIG – Oct 2008

Distributed File System

•  Single namespace for entire cluster
–  Managed by a single namenode.
–  Files are append-only.
–  Optimized for streaming reads of large files.

•  Files are broken in to large blocks.
–  Typically 128 MB
–  Replicated to several datanodes, for reliability

•  Client talks to both namenode and datanodes
–  Data is not sent through the namenode.
–  Throughput of file system scales nearly linearly with the

number of nodes.

•  Access from Java, C, or command line.

EBIG – Oct 2008

Block Placement

•  Default is 3 replicas, but settable
•  Blocks are placed (writes are pipelined):

–  On same node
–  On different rack
–  On the other rack

•  Clients read from closest replica
•  If the replication for a block drops below target,

it is automatically re-replicated.

EBIG – Oct 2008

Data Correctness

•  Data is checked with CRC32
•  File Creation

– Client computes checksum per 512 byte
– DataNode stores the checksum

•  File access
– Client retrieves the data and checksum from

DataNode
–  If Validation fails, Client tries other replicas

EBIG – Oct 2008

Map/Reduce

•  Map/Reduce is a programming model for efficient
distributed computing

•  It works like a Unix pipeline:
–  cat input | grep | sort | uniq -c | cat > output

–  Input | Map | Shuffle & Sort | Reduce | Output

•  Efficiency from
–  Streaming through data, reducing seeks
–  Pipelining

•  A good fit for a lot of applications
–  Log processing
–  Web index building

EBIG – Oct 2008

Map/Reduce Dataflow

EBIG – Oct 2008

Map/Reduce features

•  Fine grained Map and Reduce tasks
–  Improved load balancing
–  Faster recovery from failed tasks

•  Automatic re-execution on failure
–  In a large cluster, some nodes are always slow or flaky

–  Framework re-executes failed tasks
•  Locality optimizations

–  With large data, bandwidth to data is a problem
–  Map-Reduce + HDFS is a very effective solution
–  Map-Reduce queries HDFS for locations of input data
–  Map tasks are scheduled close to the inputs when possible

EBIG – Oct 2008

Why Yahoo! is investing in
Hadoop

•  We started with building better applications
–  Scale up web scale batch applications (search, ads, …)
–  Factor out common code from existing systems, so new

applications will be easier to write
–  Manage the many clusters we have more easily

•  The mission now includes research support
–  Build a huge data warehouse with many Yahoo! data sets
–  Couple it with a huge compute cluster and programming

models to make using the data easy
–  Provide this as a service to our researchers
–  We are seeing great results!

•  Experiments can be run much more quickly in this environment

EBIG – Oct 2008

Hadoop Timeline

•  2004 – HDFS & map/reduce started in Nutch
•  Dec 2005 – Nutch ported to map/reduce
•  Jan 2006 – Doug Cutting joins Yahoo
•  Feb 2006 – Hadoop splits out of Nutch and Yahoo

starts using it.
•  Apr 2006 – Hadoop sorts 1.9 TB on 188 nodes in 47

hours
•  May 2006 – Yahoo sets up research cluster
•  Jan 2008 – Hadoop is a top level Apache project
•  Feb 2008 – Yahoo creating Webmap with Hadoop

EBIG – Oct 2008

Running the Production
WebMap

•  Search needs a graph of the “known” web
–  Invert edges, compute link text, whole graph heuristics

•  Periodic batch job using Map/Reduce
–  Uses a chain of ~100 map/reduce jobs

•  Scale
–  1 trillion edges in graph
–  Final output is 300 TB compressed
–  Runs on 10,000 cores
–  Raw disk used 5 PB

•  Written mostly using Hadoop’s C++ interface

EBIG – Oct 2008

Research Clusters

•  The grid team runs the research clusters as a service to
Yahoo researchers

•  Mostly data mining/machine learning jobs
•  Most research jobs are *not* Java:

–  42% Streaming
•  Uses Unix text processing to define map and reduce

–  28% Pig
•  Higher level dataflow scripting language

–  28% Java
–  2% C++

EBIG – Oct 2008

Scaling Hadoop

•  Benchmark sorting 10 GB / node
•  Hardware held constant

EBIG – Oct 2008

Scaling Up Hadoop

•  Started as a rough prototype with lots of rough edges
•  Usability

–  Improved web UI
–  Save and display application logs

•  Performance
–  Removed round trips to disk
–  Replaced inefficient data structures.
–  Improved block placement

•  Reliability
–  Improved RPC error detection

EBIG – Oct 2008

Terabyte Sort Benchmark

•  Started by Jim Gray at Microsoft in 1998
•  Sorting 10 billion 100 byte records
•  Hadoop won the general category in 209 seconds

–  910 nodes
–  2 quad-core Xeons @ 2.0Ghz / node
–  4 SATA disks / node
–  8 GB ram / node
–  1 gb ethernet / node
–  40 nodes / rack
–  8 gb ethernet uplink / rack

•  Previous records was 297 seconds
•  Only hard parts were:

–  Getting a total order
–  Converting the data generator to map/reduce

EBIG – Oct 2008

Hadoop clusters

•  We have ~17,000 machines running Hadoop
•  Our largest clusters are currently 2000 nodes
•  Several petabytes of user data (compressed, unreplicated)
•  We run hundreds of thousands of jobs every month

EBIG – Oct 2008

Research Cluster Usage

EBIG – Oct 2008

Hadoop Community

•  Apache is focused on project communities
–  Users
–  Contributors

•  write patches
–  Committers

•  can commit patches too
–  Project Management Committee

•  vote on new committers and releases too
•  Apache is a meritocracy
•  Use, contribution, and diversity is growing

–  But we need and want more!

EBIG – Oct 2008

Size of Releases

EBIG – Oct 2008

Size of User Community

EBIG – Oct 2008

Who Uses Hadoop?

•  Amazon/A9
•  Facebook
•  Google
•  IBM
•  Joost
•  Last.fm
•  New York Times
•  PowerSet (now Microsoft)
•  Veoh
•  Yahoo!
•  More at http://wiki.apache.org/hadoop/PoweredBy

EBIG – Oct 2008

Word Count Example

•  Mapper
–  Input: value: lines of text of input
–  Output: key: word, value: 1

•  Reducer
–  Input: key: word, value: set of counts
–  Output: key: word, value: sum

•  Launching program
–  Defines the job
–  Submits job to cluster

EBIG – Oct 2008

Word Count Dataflow

EBIG – Oct 2008

Example: Word Count Mapper

 public static class MapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 output.collect(word, one);
 }
 }
 }

EBIG – Oct 2008

Example: Word Count Reducer

 public static class Reduce extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

 }

EBIG – Oct 2008

Configuring a Job

•  Jobs are controlled by configuring JobConfs
•  JobConfs are maps from attribute names to string value
•  The framework defines attributes to control how the job

is executed.
conf.set(“mapred.job.name”, “MyApp”);

•  Applications can add arbitrary values to the JobConf
conf.set(“my.string”, “foo”);

conf.setInteger(“my.integer”, 12);

•  JobConf is available to all of the tasks

EBIG – Oct 2008

Putting it all together

•  Create a launching program for your application
•  The launching program configures:

–  The Mapper and Reducer to use
–  The output key and value types (input types are

inferred from the InputFormat)
–  The locations for your input and output

•  The launching program then submits the job
and typically waits for it to complete

EBIG – Oct 2008

Putting it all together

public class WordCount {
……
public static void main(String[] args) throws IOException {
 JobConf conf = new JobConf(WordCount.class);
 // the keys are words (strings)
 conf.setOutputKeyClass(Text.class);
 // the values are counts (ints)
 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(MapClass.class);
 conf.setReducerClass(Reduce.class);
 conf.setInputPath(new Path(args[0]);
 conf.setOutputPath(new Path(args[1]);
 JobClient.runJob(conf);
…..

EBIG – Oct 2008

A Counter Example

•  Bob wanted to count lines in text files totaling several
terabytes

•  He used
–  Identity Mapper (input copied directly to output)
–  A single Reducer that counts the lines and outputs the total

•  What is he doing wrong ?
•  This really happened!
•  Take home message is that Hadoop is powerful and

can be dangerous in the wrong hands…

EBIG – Oct 2008

Some handy tools

•  Input/Output Formats
•  Partitioners
•  Combiners
•  Compression
•  Counters
•  Speculation
•  Zero reduces
•  Distributed File Cache
•  Tool

EBIG – Oct 2008

Input and Output Formats

•  A Map/Reduce may specify how it’s input is to be read
by specifying an InputFormat to be used

•  A Map/Reduce may specify how it’s output is to be
written by specifying an OutputFormat to be used

•  These default to TextInputFormat and
TextOutputFormat, which process line-based text data

•  Another common choice is SequenceFileInputFormat
and SequenceFileOutputFormat for binary data

•  These are file-based, but they are not required to be

EBIG – Oct 2008

Partitioners

•  Partitioners are application code that define how keys
are assigned to reduces

•  Default partitioning spreads keys evenly, but randomly
–  Uses key.hashCode() % num_reduces

•  Custom partitioning is often required, for example, to
produce a total order in the output
–  Should implement Partitioner interface
–  Set by calling conf.setPartitionerClass(MyPart.class)
–  To get a total order, sample the map output keys and pick

values to divide the keys into roughly equal buckets and use
that in your partitioner

EBIG – Oct 2008

Combiners

•  When maps produce many repeated keys
–  It is often useful to do a local aggregation following the map
–  Done by specifying a Combiner
–  Goal is to decrease size of the transient data
–  Combiners have the same interface as Reduces, and often are

the same class.
–  Combiners must not have side effects, because they run an

indeterminate number of times.
–  In WordCount, conf.setCombinerClass(Reduce.class);

EBIG – Oct 2008

Compression

•  Compressing the outputs and intermediate data will often yield
huge performance gains
–  Can be specified via a configuration file or set programatically
–  Set mapred.output.compress to true to compress job output
–  Set mapred.compress.map.output to true to compress map outputs

•  Compression Types (mapred.output.compression.type)
–  “block” - Group of keys and values are compressed together
–  “record” - Each value is compressed individually
–  Block compression is almost always best

•  Compression Codecs (mapred(.map)?.output.compression.codec)
–  Default (zlib) - slower, but more compression
–  LZO - faster, but less compression

EBIG – Oct 2008

Counters

•  Often Map/Reduce applications have countable events
•  For example, framework counts records in to and out of

Mapper and Reducer
•  To define user counters:

static enum Counter {EVENT1, EVENT2};

reporter.incrCounter(Counter.EVENT1, 1);

•  Define nice names in a MyClass_Counter.properties file
CounterGroupName=My Counters

EVENT1.name=Event 1

EVENT2.name=Event 2

EBIG – Oct 2008

Speculative execution

•  The framework can run multiple instances of slow tasks
–  Output from instance that finishes first is used
–  Controlled by the configuration variable

mapred.speculative.execution
–  Can dramatically bring in long tails on jobs

EBIG – Oct 2008

Zero Reduces

•  Frequently, we only need to run a filter on the input data
–  No sorting or shuffling required by the job
–  Set the number of reduces to 0
–  Output from maps will go directly to OutputFormat and disk

EBIG – Oct 2008

Distributed File Cache

•  Sometimes need read-only copies of data on the local
computer.
–  Downloading 1GB of data for each Mapper is expensive

•  Define list of files you need to download in JobConf
•  Files are downloaded once per a computer
•  Add to launching program:

DistributedCache.addCacheFile(new URI(“hdfs://nn:8020/foo”), conf);

•  Add to task:
Path[] files = DistributedCache.getLocalCacheFiles(conf);

EBIG – Oct 2008

Tool

•  Handle “standard” Hadoop command line options:
–  -conf file - load a configuration file named file
–  -D prop=value - define a single configuration property prop

•  Class looks like:
public class MyApp extends Configured implements Tool {

 public static void main(String[] args) throws Exception {

 System.exit(ToolRunner.run(new Configuration(),

 new MyApp(), args));

 }

 public int run(String[] args) throws Exception {

 …. getConf() …

 }

}

EBIG – Oct 2008

Non-Java Interfaces

•  Streaming
•  Pipes (C++)
•  Pig

EBIG – Oct 2008

Streaming

•  What about non-programmers?
–  Can define Mapper and Reducer using Unix text filters
–  Typically use grep, sed, python, or perl scripts

•  Format for input and output is: key \t value \n
•  Allows for easy debugging and experimentation
•  Slower than Java programs

bin/hadoop jar hadoop-streaming.jar -input in-dir -output out-dir

 -mapper streamingMapper.sh -reducer streamingReducer.sh

•  Mapper: sed -e 's| |\n|g' | grep .
•  Reducer: uniq -c | awk '{print $2 "\t" $1}'

EBIG – Oct 2008

Pipes (C++)

•  C++ API and library to link application with
•  C++ application is launched as a sub-process of the Java task
•  Keys and values are std::string with binary data
•  Word count map looks like:

class WordCountMap: public HadoopPipes::Mapper {

public:

 WordCountMap(HadoopPipes::TaskContext& context){}

 void map(HadoopPipes::MapContext& context) {

 std::vector<std::string> words =

 HadoopUtils::splitString(context.getInputValue(), " ");

 for(unsigned int i=0; i < words.size(); ++i) {

 context.emit(words[i], "1");

 }}};

EBIG – Oct 2008

Pig

•  Scripting language that generates Map/Reduce jobs
•  User uses higher level operations

–  Group by
–  Foreach

•  Word Count:
input = LOAD ’in-dir' USING TextLoader();

words = FOREACH input GENERATE

FLATTEN(TOKENIZE(*));

grouped = GROUP words BY $0;

counts = FOREACH grouped GENERATE group,

COUNT(words);

STORE counts INTO ‘out-dir’;

EBIG – Oct 2008

What’s Next?

•  Better scheduling
–  Pluggable scheduler
–  Queues for controlling resource allocation

•  Total Order Sampler and Partitioner
•  Hive
•  Interface cleanups
•  Table store library
•  HDFS and Map/Reduce security
•  High Availability via Zookeeper
•  Name Node scaling

EBIG – Oct 2008

Q&A

•  For more information:
– Website: http://hadoop.apache.org/core
– Mailing lists:

•  core-dev@hadoop.apache
•  core-user@hadoop.apache

–  IRC: #hadoop on irc.freenode.org

EBIG – Oct 2008

Debugging & Diagnosis

•  Run job with the Local Runner
–  Set mapred.job.tracker to “local”
–  Runs application in a single process and thread

•  Run job on a small data set on a 1 node cluster
–  Can be done on your local dev box

•  Set keep.failed.task.files to true
–  This will keep files from failed tasks that can be used for

debugging
–  Use the IsolationRunner to run just the failed task

•  Java Debugging hints
–  Send a kill -QUIT to the Java process to get the call stack,

locks held, deadlocks

