
Hadoop Map/Reduce

Owen O’Malley
July 2006



2

Map/Reduce Goals

– Distribution
• The data is available where needed.
• Application does not care how many computers

are being used.
– Reliability

• Application does not care that computers or
networks may have temporary or permanent
failures.



3

Application Perspective
• Define Mapper and Reducer classes and a

“launching” program.
• Mapper

– Is given a stream of key1,value1 pairs
– Generates a stream of key2, value2 pairs

• Reducer
– Is given a key2 and a stream of value2’s
– Generates a stream of key3, value3 pairs

• Launching Program
– Creates a JobConf to define a job.
– Submits JobConf to JobTracker and waits for

completion.



4

Application Dataflow



5

Input & Output Formats
• The application also chooses input and output

formats, which define how the persistent data
is read and written. These are interfaces and
can be defined by the application.

• InputFormat
– Splits the input to determine the input to each map

task.
– Defines a RecordReader that reads key, value

pairs that are passed to the map task
• OutputFormat

– Given the key, value pairs and a filename, writes
the reduce task output to persistent store.



6

Output Ordering
• The application can control the sort order and

partitions of the output via
OutputKeyComparator and Partitioner.

• OutputKeyComparator
– Defines how to compare serialized keys.
– Defaults to WritableComparable, but should be

defined for any application defined key types.
• key1.compareTo(key2)

• Partitioner
– Given a map output key and the number of

reduces, chooses a reduce.
– Defaults to HashPartitioner

• key.hashCode % numReduces



7

Combiners
• Combiners are an optimization for jobs with

reducers that can merge multiple values into
a single value.

• Typically, the combiner is the same as the
reducer and runs on the map outputs before it
is transferred  to the reducer’s machine.

• For example, WordCount’s mapper generates
(word, count) and the combiner and reducer
generate the sum for each word.
– Input: “hi Owen bye Owen”
– Map output: (“hi”, 1), (“Owen”, 1), (“bye”,1), (“Owen”,1)
– Combiner output: (“Owen”, 2), (“bye”, 1), (“hi”, 1)



8

Process Communication
• Use a custom RPC implementation

– Easy to change/extend
– Defined as Java interfaces
– Server objects implement the interface
– Client proxy objects automatically created

• All messages originate at the client
– Prevents cycles and therefore deadlocks

• Errors
– Include timeouts and communication problems.
– Are signaled to client via IOException.
– Are NEVER signaled to the server.



9

Map/Reduce Processes
• Launching Application

– User application code
– Submits a specific kind of Map/Reduce job

• JobTracker
– Handles all jobs
– Makes all scheduling decisions

• TaskTracker
– Manager for all tasks on a given node

• Task
– Runs an individual map or reduce fragment for a

given job
– Forks from the TaskTracker



10

Process Diagram



11

Job Control Flow
• Application launcher creates and submits job.
• JobTracker initializes job, creates FileSplits,

and adds tasks to queue.
• TaskTrackers ask for a new map or reduce

task every 10 seconds or when the previous
task finishes.

• As tasks run, the TaskTracker reports status
to the JobTracker every 10 seconds.

• When job completes, the JobTracker tells the
TaskTrackers to delete temporary files.

• Application launcher notices job completion
and stops waiting.



12

Application Launcher

• Application code to create JobConf and set
the parameters.
– Mapper, Reducer classes
– InputFormat and OutputFormat classes
– Combiner class, if desired

• Writes JobConf and the application jar to DFS
and submits job to JobTracker.

• Can exit immediately or wait for the job to
complete or fail.



13

JobTracker

• Takes JobConf and creates an instance of
the InputFormat. Calls the getSplits method to
generate map inputs.

• Creates a JobInProgress object and a bunch
of TaskInProgress “TIP” and Task objects.
– JobInProgress is the status of the job.
– TaskInProgress is the status of a fragment of

work.
– Task is an attempt to do a TIP.

• As TaskTrackers request work, they are given
Tasks to execute.



14

TaskTracker
• All Tasks

– Create the TaskRunner
– Copy the job.jar and job.xml from DFS.
– Localize the JobConf for this Task.
– Call task.prepare() (details later)
– Launch the Task in a new JVM under

TaskTracker.Child.
– Catch output from Task and log it at the info level.
– Take Task status updates and send to JobTracker

every 10 seconds.
– If job is killed, kill the task.
– If task dies or completes, tell the JobTracker.



15

TaskTracker for Reduces

• For Reduces, the task.prepare() fetches all of
the relevant map outputs for this reduce.

• Files are fetched using http from the map’s
TaskTracker’s Jetty.

• Files are fetched in parallel threads, but only
1 to each host.

• When fetches fail, a backoff scheme is used
to keep from overloading TaskTrackers.

• Fetching accounts for the first 33% of the
reduce’s progress.



16

Map Tasks

• Use the InputFormat object to create a
RecordReader from the FileSplit.

• Loop through the keys and values in the
FileSplit and feed each to the mapper.

• For no combiner, a SequenceFile is written
for the keys to each reduce.

• With a combiner, the frameworks buffers
100,000 keys and values, sorts, combines,
and writes them to SequenceFile’s for each
reduce.



17

Reduce Tasks: Sort

• Sort
– 33% to 66% of reduce’s progress
– Base

• Read 100 (io.sort.mb) meg of keys and values into
memory.

• Sort the memory
• Write to disk

– Merge
• Read 10 (io.sort.factor) files and do a merge into 1 file.
• Repeat as many times as required (2 levels for 100 files,

3 levels for 1000 files, etc.)



18

Reduce Tasks: Reduce

• Reduce
– 66% to 100% of reduce’s progress
– Use a SequenceFile.Reader to read sorted input

and pass to reducer one key at a time along with
the associated values.

– Output keys and values are written to the
OutputFormat object, which usually writes a file to
DFS.

– The output from the reduce is NOT resorted, so it
is in the order and fragmentation of the map output
keys.


