Hadoop Map/Reduce

Owen O’'Malley
July 2006



Map/Reduce Goals

— Distribution
 The data is available where needed.

» Application does not care how many computers
are being used.

— Reliability
» Application does not care that computers or

networks may have temporary or permanent
failures.



Application Perspective

Define Mapper and Reducer classes and a
“launching” program.

Mapper

— Is given a stream of key1,value1 pairs

— Generates a stream of key2, value2 pairs
Reducer

— Is given a key2 and a stream of value2’s
— Generates a stream of key3, value3 pairs
Launching Program

— Creates a JobConf to define a job.

— Submits JobConf to JobTracker and waits for
completion.



Application Dataflow

Persistent Data

Transient Data

eeeeeeeeeeeeeeeeee

Persistent Data




Input & Output Formats

* The application also chooses input and output
formats, which define how the persistent data
is read and written. These are interfaces and
can be defined by the application.

* |nputFormat

— Splits the input to determine the input to each map
task.

— Defines a RecordReader that reads key, value
pairs that are passed to the map task

e OutputFormat

— Given the key, value pairs and a filename, writes
the reduce task output to persistent store.



Output Ordering

* The application can control the sort order and
partitions of the output via

OutputKeyComparator and Partitioner.

* OutputKeyComparator
— Defines how to compare serialized keys.

— Defaults to WritableComparable, but should be
defined for any application defined key types.
* key1l.compareTo(key2)

 Partitioner

— Given a map output key and the number of
reduces, chooses a reduce.

— Defaults to HashPartitioner
« key.hashCode % numReduces 6



Combiners

« Combiners are an optimization for jobs with
reducers that can merge multiple values into
a single value.

* Typically, the combiner is the same as the
reducer and runs on the map outputs before it
is transferred to the reducer’'s machine.

* For example, WordCount’'s mapper generates
(word, count) and the combiner and reducer

generate the sum for each word.

— Input: “hi Owen bye Owen”

— Map output: (“hi”, 1), (“Owen”, 1), (“bye”,1), (“Owen”,1)

— Combiner output: (“Owen”, 2), (“bye”, 1), (*hi”, 1) -



Process Communication

« Use a custom RPC implementation
— Easy to change/extend
— Defined as Java interfaces
— Server objects implement the interface
— Client proxy objects automatically created

* All messages originate at the client
— Prevents cycles and therefore deadlocks

* Errors
— Include timeouts and communication problems.
— Are signaled to client via IOException.
— Are NEVER signaled to the server.



Map/Reduce Processes

Launching Application
— User application code
— Submits a specific kind of Map/Reduce job

JobTracker
— Handles all jobs
— Makes all scheduling decisions

TaskTracker
— Manager for all tasks on a given node

Task

— Runs an individual map or reduce fragment for a
given job
— Forks from the TaskTracker



rocess Diagram

Launching Application

JobTracker
-
TaskTracker TaskTracker TaskTracker
- ¥

Task Task Task Task Task
JobSubmissionProtocol - -~ - -
InterTrackerProtocol >
>

TaskUmbilicalProtocol

10



Job Control Flow

Application launcher creates and submits job.

JobTracker initializes job, creates FileSpilits,
and adds tasks to queue.

TaskTrackers ask for a new map or reduce
task every 10 seconds or when the previous
task finishes.

As tasks run, the TaskTracker reports status
to the JobTracker every 10 seconds.

When job completes, the JobTracker tells the
TaskTrackers to delete temporary files.

Application launcher notices job completion
and stops waiting. T



Application Launcher

 Application code to create JobConf and set
the parameters.

— Mapper, Reducer classes

— InputFormat and OutputFormat classes
— Combiner class, if desired

* Writes JobConf and the application jar to DFS
and submits job to JobTracker.

« Can exit immediately or wait for the job to
complete or fail.

12



JobTracker

« Takes JobConf and creates an instance of
the InputFormat. Calls the getSplits method to
generate map inputs.

« Creates a JobInProgress object and a bunch
of TaskIinProgress “TIP” and Task objects.
— JobInProgress is the status of the job.

— TaskInProgress is the status of a fragment of
work.

— Task is an attempt to do a TIP.

* As TaskTrackers request work, they are given
Tasks to execute.

13



TaskTracker

o All Tasks

— Create the TaskRunner

— Copy the job.jar and job.xml from DFS.
— Localize the JobConf for this Task.

— Call task.prepare() (details later)

— Launch the Task in a new JVM under
TaskTracker.Child.

— Catch output from Task and log it at the info level.

— Take Task status updates and send to JobTracker
every 10 seconds.

— If job is killed, kill the task.
— If task dies or completes, tell the JobTracker. 14



TaskTracker for Reduces

For Reduces, the task.prepare() fetches all of
the relevant map outputs for this reduce.

Files are fetched using http from the map’s
TaskTracker's Jetty.

Files are fetched in parallel threads, but only
1 to each host.

When fetches fail, a backoff scheme is used
to keep from overloading TaskTrackers.

Fetching accounts for the first 33% of the
reduce’s progress.

15



Map Tasks

Use the InputFormat object to create a
RecordReader from the FileSpilit.

Loop through the keys and values in the
FileSplit and feed each to the mapper.

For no combiner, a SequencekFile is written
for the keys to each reduce.

With a combiner, the frameworks buffers
100,000 keys and values, sorts, combines,
and writes them to SequenceFile’s for each
reduce.

16



Reduce Tasks: Sort

e Sort

— 33% to 66% of reduce’s progress

— Base

« Read 100 (io.sort.mb) meg of keys and values into
memory.

« Sort the memory
* Write to disk
— Merge
» Read 10 (io.sort.factor) files and do a merge into 1 file.

» Repeat as many times as required (2 levels for 100 files,
3 levels for 1000 files, etc.)

17



Reduce Tasks: Reduce

* Reduce
— 66% to 100% of reduce’s progress

— Use a SequenceFile.Reader to read sorted input
and pass to reducer one key at a time along with
the associated values.

— Output keys and values are written to the
OutputFormat object, which usually writes a file to
DFS.

— The output from the reduce is NOT resorted, so it
IS in the order and fragmentation of the map output
keys.

18



