Running Hadoop in the Cloud

Tom White
tomwhite@apache.org
ApacheCon Europe 2009
Wednesday, 25 Mar 2009
About me

- Apache Hadoop Committer, PMC Member, Apache Member
- Employed by Cloudera
- Writing a book on Hadoop for O’Reilly
 - http://hadoopbook.com
Agenda

- Cloud Computing and Hadoop
- Hadoop on Amazon EC2
 - Storage options
 - Deployment options
- Demo
- Case Study
Cloud Computing

- “Cloud” = data center hardware and software
 - Public cloud – service sold to the public
 - Private cloud – internal to an organization

- Three new aspects (of public clouds)
 1. The illusion of infinite computing resources available on demand
 2. The elimination of an up-front commitment by Cloud users
 3. The ability to pay for use of computing resources on a short-term basis as needed
Why run Hadoop in the “public” cloud?

- “Infinite” resources
 - Hadoop scales linearly
- No upfront commitment
 - Try before you buy
 - Will Hadoop solve my problem?
- Pay as you go
 - Elasticity
 - Run a large cluster for a short time
 - Grow or shrink a cluster on demand
- **Lower administration costs and total cost of ownership**
Requirements for Hadoop

- Hardware
 - Hadoop needs lots of memory and disks
- Storage
 - Hadoop works best when storage is integrated with compute nodes
- Networking topology
 - Prefer control over placement of machines
 - Hadoop needs visibility into topology
- Bandwidth control
 - Dedicated switches are best
Hadoop on Amazon EC2
Hadoop on Amazon EC2

- **Hardware**
 - E.g. High-CPU XLarge:
 - 8 cores, 7GB memory, 1690 GB storage

- **Storage**
 - Choice of local disks, S3, EBS

- **Networking topology**
 - Finest granularity is “availability zone”

- **Bandwidth control**
 - Large instances have “high” I/O performance (no guarantees)
Storage options
Hadoop on EC2 with S3 storage

- Pros
 - Elastic
 - Use existing S3 data
 - Cheap
- Cons
 - No locality
 - Poor transfer speed
Hadoop on EC2 with local storage

Pros
- Data locality

Cons
- No rack locality
- Cluster is always on
Hadoop on EC2 with EBS storage

Pros
- Data locality
- Elastic

Cons
- No rack locality
- No pre-existing AMIs
Economics

<table>
<thead>
<tr>
<th>Storage</th>
<th>Price (per GB month)</th>
<th>Transfer cost (within AWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBS</td>
<td>$0.10</td>
<td>$0.10 per million I/O requests</td>
</tr>
<tr>
<td>S3</td>
<td>$0.15</td>
<td>$0.01 per thousand HTTP requests</td>
</tr>
<tr>
<td>EC2 local storage</td>
<td>$0.32</td>
<td></td>
</tr>
<tr>
<td>(reserved instance for one year)</td>
<td></td>
<td>$0.00</td>
</tr>
</tbody>
</table>

- EBS is a good fit for clusters with low–medium utilization
Deployment options
S3 Filesystems

- Hadoop Filesystem abstraction
 - HDFS (hdfs://), KFS (kfs://), local (file://)
- S3 Native Filesystem (s3n://)
 - 5GB file size
 - Use with existing S3 data and tools
- S3 Block Filesystem (s3://)
 - Unlimited file size
 - Can’t use with existing S3 data or tools
Hadoop S3 Examples

- Copy from HDFS to S3
 - `hadoop fs -cp hdfs://namenode/path s3n://bucket/path`

- Parallel copy from HDFS to S3
 - `hadoop distcp hdfs://namenode/path s3://bucket/path`

- Run MapReduce on S3 data
 - `hadoop jar hadoop-*-examples.jar grep \
 s3n://bucket/input s3n://bucket/output pattern`
Hadoop EC2 AMIs

- Public AMIs provided by Apache and Cloudera
 - Use the same launch scripts
 - http://wiki.apache.org/hadoop/AmazonEC2
 - http://www.cloudera.com/hadoop-ec2
 - Launch scripts do cluster coordination and configuration
- AMIs are easy to customize
 - Patches
 - Extra software
Apache Hadoop and Cloudera’s Distribution

- Apache hosts Hadoop development
 - Nightly builds
 - Releases
- Cloudera’s Distribution for Hadoop
 - Based on most recent stable version
 - Uses RPMs for deployment (other packages coming soon)
 - Linux Filesystem Hierarchy Standard
 - Standard Linux service management
 - Dependency management
Demo
Your Amazon Account Number.
AWS_ACCOUNT_ID=

Your Amazon AWS access key.
AWS_ACCESS_KEY_ID=

Your Amazon AWS secret access key.
AWS_SECRET_ACCESS_KEY=

Location of EC2 keys.
The default setting is probably OK if you set up EC2 following the Amazon Getting Started guide.
EC2_KEYDIR="dirname "$EC2_PRIVATE_KEY"

The EC2 key name used to launch instances.
The default is the value used in the Amazon Getting Started guide.
KEY_NAME=tom

Where your EC2 private key is stored (created when following the Amazon Getting Started guide).
You need to change this if you don't store this with your other EC2 keys.
PRIVATE_KEY_PATH=`echo "$EC2_KEYDIR"/id_rsa_cloudera`

SSH options used when connecting to EC2 instances.
SSH_OPTS=`echo -i "$PRIVATE_KEY_PATH" -o StrictHostKeyChecking=no -o ServerAliveInterval=30`

The version of Hadoop to use. Note that this is the version of the AMI of Cloudera's Distribution for Hadoop here.
HADOOP_VERSION=0.3.0

The Amazon S3 bucket where the Hadoop AMI is stored.
The default value is for public images, so can be left if you are using running a public image.
Change this value only if you are creating your own (private) AMI
so you can store it in a bucket you own.
[Changed to Cloudera bucket]
S3_BUCKET=cloudera-ec2-hadoop-images
launch-cluster tom-hadoop 10
Testing for existing master in group: tom-hadoop
Starting master with AMI ami-9136d1f8
Waiting for instance i-b3f16ada to start
........Started as ip-10-250-74-242.ec2.internal
Warning: Permanently added 'ec2-75-101-176-200.compute-1.amazonaws.com,75.101.176.200' (RSA) to the list of known hosts.
Copying private key to master
d_id_rsa.cloudera
Master is ec2-75-101-176-200.compute-1.amazonaws.com, ip is 75.101.176.200, zone is us-east-1c.
Adding tom-hadoop node(s) to cluster group tom-hadoop with AMI ami-9136d1f8
i-9bf16af2
i-9af16af3
i-9df16af4
i-9cf16af5
i-9ff16af6
i-9ef16af7
i-91f16af8
i-90f16af9
i-93f16afa
i-92f16afb
loy:cloudera-for-hadoop-on-ec2-0.3.0 tom$
[root@ip-10-250-74-242 ~]# hadoop distcp s3n://cloudera-datasets/wiki-articles/ wikipedia
09/03/20 10:44:05 INFO tools.DistCp: srcPaths=[s3n://cloudera-datasets/wiki-articles]
09/03/20 10:44:05 INFO tools.DistCp: destPath=wikipedia
09/03/20 10:44:09 INFO tools.DistCp: srcCount=302
09/03/20 10:44:12 INFO mapred.JobClient: Running job: job_200903201031_0001
09/03/20 10:44:13 INFO mapred.JobClient: map 0% reduce 0%
09/03/20 10:44:34 INFO mapred.JobClient: map 1% reduce 0%
09/03/20 10:44:49 INFO mapred.JobClient: map 3% reduce 0%
09/03/20 10:45:05 INFO mapred.JobClient: map 10% reduce 0%
ip-10-250-74-242 Hadoop Map/Reduce Administration

State: RUNNING
Started: Fri Mar 20 10:31:35 EDT 2009
Version: Unknown, rUnknown
Compiled: Unknown by Unknown
Identifier: 200903201031

Cluster Summary

<table>
<thead>
<tr>
<th>Maps</th>
<th>Reduces</th>
<th>Total Submissions</th>
<th>Nodes</th>
<th>Map Task Capacity</th>
<th>Reduce Task Capacity</th>
<th>Avg. Tasks/Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Running Jobs

Running Jobs

none

Completed Jobs

<table>
<thead>
<tr>
<th>Jobid</th>
<th>User</th>
<th>Name</th>
<th>Map % Complete</th>
<th>Map Total</th>
<th>Maps Completed</th>
<th>Reduce % Complete</th>
<th>Reduce Total</th>
<th>Reduces Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>job_200903201031_0001</td>
<td>root</td>
<td>distcp</td>
<td>100.00%</td>
<td>75</td>
<td>75</td>
<td>100.00%</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Failed Jobs

Failed Jobs

none
[root@ip-10-250-74-242 hadoop]# hadoop jar hadoop-0.18.3-examples.jar grep wikipedia/wiki-articles grep-out '(hadoop|pig)'
09/03/20 11:18:52 INFO mapred.FileInputFormat: Total input paths to process : 300
09/03/20 11:18:52 INFO mapred.FileInputFormat: Total input paths to process : 300
09/03/20 11:18:52 INFO mapred.JobClient: Running job: job_200903201031_0006
09/03/20 11:18:53 INFO mapred.JobClient: map 0% reduce 0%
09/03/20 11:19:01 INFO mapred.JobClient: map 1% reduce 0%
09/03/20 11:19:02 INFO mapred.JobClient: map 3% reduce 0%
09/03/20 11:19:03 INFO mapred.JobClient: map 5% reduce 0%
09/03/20 11:19:04 INFO mapred.JobClient: map 6% reduce 0%
09/03/20 11:19:11 INFO mapred.JobClient: map 8% reduce 0%
09/03/20 11:19:12 INFO mapred.JobClient: map 9% reduce 0%
09/03/20 11:19:13 INFO mapred.JobClient: map 10% reduce 0%
09/03/20 11:19:14 INFO mapred.JobClient: map 11% reduce 0%
09/03/20 11:19:15 INFO mapred.JobClient: map 12% reduce 0%
09/03/20 11:19:18 INFO mapred.JobClient: map 13% reduce 0%
09/03/20 11:19:19 INFO mapred.JobClient: map 13% reduce 1%
09/03/20 11:19:20 INFO mapred.JobClient: map 13% reduce 2%
09/03/20 11:19:21 INFO mapred.JobClient: map 14% reduce 2%
09/03/20 11:19:22 INFO mapred.JobClient: map 16% reduce 3%
09/03/20 11:19:23 INFO mapred.JobClient: map 17% reduce 3%
09/03/20 11:19:24 INFO mapred.JobClient: map 18% reduce 3%
09/03/20 11:19:25 INFO mapred.JobClient: map 18% reduce 4%
09/03/20 11:19:26 INFO mapred.JobClient: map 19% reduce 4%
09/03/20 11:19:28 INFO mapred.JobClient: map 20% reduce 4%
09/03/20 11:19:30 INFO mapred.JobClient: map 21% reduce 4%
09/03/20 11:19:32 INFO mapred.JobClient: map 22% reduce 5%
09/03/20 11:19:33 INFO mapred.JobClient: map 23% reduce 5%
09/03/20 11:19:34 INFO mapred.JobClient: map 25% reduce 5%
09/03/20 11:19:35 INFO mapred.JobClient: map 26% reduce 5%
Hadoop job _200903201031_0006 on **ip-10-250-74-242**

- **User:** root
- **Job Name:** grep-search
- **Status:** Running
- **Started at:** Fri Mar 20 11:18:52 EDT 2009
- **Running for:** 46sec

Task Status

<table>
<thead>
<tr>
<th>Kind</th>
<th>% Complete</th>
<th>Num Tasks</th>
<th>Pending</th>
<th>Running</th>
<th>Complete</th>
<th>Killed</th>
<th>Failed/Killed Task Attempts</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>27.98%</td>
<td>300</td>
<td>201</td>
<td>16</td>
<td>83</td>
<td>0</td>
<td>0 / 0</td>
</tr>
<tr>
<td>reduce</td>
<td>6.94%</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0 / 0</td>
</tr>
</tbody>
</table>

System Counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Map</th>
<th>Reduce</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDFS bytes read</td>
<td>5,407,561,922</td>
<td>0</td>
<td>5,407,561,922</td>
</tr>
<tr>
<td>Local bytes written</td>
<td>24,819</td>
<td>0</td>
<td>24,819</td>
</tr>
<tr>
<td>Job Counters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launched reduce tasks</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Launched map tasks</td>
<td>0</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>Data-local map tasks</td>
<td>0</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>Reduce input groups</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Combine output records</td>
<td>88</td>
<td>0</td>
<td>88</td>
</tr>
</tbody>
</table>
[root@ip-10-250-74-242 hadoop]# hadoop fs -cat grep-out/part-00000
75524 pig
47 hadoop
[root@ip-10-250-74-242 hadoop]#
Running Hadoop instances:

<table>
<thead>
<tr>
<th>INSTANCE</th>
<th>ami-9136d1f8</th>
<th>ec2-75-101-176-200.compute-1.amazonaws.com</th>
<th>ip-10-250-74-242.ec2.internal</th>
<th>ru</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-b3f16ada</td>
<td>0</td>
<td>c1.medium</td>
<td>2009-03-20T14:30:02+0000</td>
<td>us-east-1c</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-b9f16af2</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-9af16af3</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-9df16af4</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-9cf16af5</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-9f16af6</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-9ef16af7</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-91f16af8</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-90f16af9</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-93f16afa</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-92f16afb</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-91f16af2</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-90f16af9</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-93f16afa</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-92f16afb</td>
<td>am</td>
<td>0</td>
<td>c1.medium</td>
</tr>
</tbody>
</table>

Terminate all instances? [yes or no]: yes

<table>
<thead>
<tr>
<th>INSTANCE</th>
<th>i-b3f16ada</th>
<th>running shutting-down</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTANC</td>
<td>i-b9f16af2</td>
<td>running shutting-down</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-9af16af3</td>
<td>running shutting-down</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-9df16af4</td>
<td>running shutting-down</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-9cf16af5</td>
<td>running shutting-down</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-9f16af6</td>
<td>running shutting-down</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-9ef16af7</td>
<td>running shutting-down</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-91f16af8</td>
<td>running shutting-down</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-90f16af9</td>
<td>running shutting-down</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-93f16afa</td>
<td>running shutting-down</td>
</tr>
<tr>
<td>INSTANC</td>
<td>i-92f16afb</td>
<td>running shutting-down</td>
</tr>
</tbody>
</table>

loy:cloudera-for-hadoop-on-ec2-0.3.0 tom$
Case Study
Case Study: Adknowledge

- Ad network broker www.adknowledge.com
- Already using AWS for some time
- Use Hadoop and AWS to analyze clickstream events
Adknowledge Data Flow

- Continually loading clickstream data into S3. 1TB/month (compressed).
- Daily batch jobs on a Hadoop cluster of 100 EC2 extra large instances.
- Map to load data into HDFS from S3.
- 9 MapReduce jobs take 3.5 hours to run.
- Final result 1.5 GB (compressed) copied back to S3 before tearing down cluster.
Adknowledge Lessons Learned

- 2% of EC2 instances fail. Problem if one’s a namenode.
- System was not stable until Hadoop 0.18 (previously 2–3 complete failures per week)
- Error handling between dependent jobs is not robust
 - Hadoop Workflow System (HADOOP-5303) will improve this
Future

- Hadoop on EBS
- Use a hybrid local disk/EBS storage model
 - 1 replica on EBS, 2 local
- Share HDFS clusters
 - Use EBS snapshot facility
 - Like Amazon Public Datasets but for HDFS
- Hadoop on more cloud providers
Questions

- Apache Hadoop on EC2 and S3
 - http://wiki.apache.org/hadoop/AmazonEC2
 - http://wiki.apache.org/hadoop/AmazonS3
- Cloudera’s Distribution for Hadoop
 - http://www.cloudera.com/hadoop
 - http://www.cloudera.com/community-support
- Tom White
 - tomwhite@apache.org
 - tom@cloudera.com