
Hadoop 24/7
Allen Wittenauer
March 25, 2009



Dear SysAdmin,
 
 Please set up Hadoop 
using these machines.  Let 
us know when they are 
ready for use.  

Thanks, 
The Users



Yahoo! @ ApacheCon 

Install some nodes with Hadoop...

3



Yahoo! @ ApacheCon 

Individual Node Configuration

• MapReduce slots tied to # of cores 
vs. memory

• DataNode reads/writes spread 
(statistically) even across drives

• hadoop-site.xml dfs.data.dir:
<property>

<name>dfs.data.dir</name>
<value>/hadoop0,/hadoop1,

/hadoop2,/hadoop3</value>
</property>

• RAID
– If any, mirror NameNode only
– Slows DataNode in most configurations

Generic 1U

swap, 

/hadoop2

root, 

/hadoop0

swap, 

/hadoop3

swap, 

/hadoop1

4



Yahoo! @ ApacheCon 

NameNode’s Lists of Nodes

• slaves
– used by start-*.sh/stop-*.sh

• dfs.include
– IPs or FQDNs of hosts allowed in the HDFS

• dfs.exclude
– IPs or FQDNs of hosts to ignore

• active datanode list=include list-exclude list
– Dead list in NameNode Status

5



Yahoo! @ ApacheCon 

Adding/Removing DataNodes 
Dynamically

• Add nodes
– Add new nodes to dfs.include

• (Temporarily) Remove Nodes
– Add nodes to dfs.exclude

• Update Node Lists and Decommission
– hadoop dfsadmin -refreshNodes

• Replicates blocks from any live nodes in the exclude list
– Hint: Do not decommission too many nodes (200+) at once! Very easy to 

saturate namenode!

6



Yahoo! @ ApacheCon 

Racks Of Nodes

• Each node
– 1 connection to network switch
– 1 connection to console server

• Dedicated
– Name Nodes
– Job Tackers
– Data Loaders
– ...

• More and More Racks...

Generic 1U

Generic 1U

Generic 1U

Generic 1U

Generic 1U

Generic 1U

Generic 1U

Generic 1U

Console

Switch

7



Switch

H H H

Switch

H H H

Switch

H H H40 hosts/racks

GE

2xGE

Core

Switch

Core

Switch

Core

Switch

Core

Switch

Yahoo! @ ApacheCon 

Networks of Racks, the Yahoo! Way

• Each switch connected to a 
bigger switch

• Physically, one big network

• Loss of one core covered by 
redundant connections

• Logically, lots of small 
networks (netmask /26)

8



Yahoo! @ ApacheCon 

Rack Awareness (HADOOP-692)

• Hadoop needs node layout (really network) information
– Speed:  

• read/write prioriti[sz]ation (*)
– local node
– local rack
– rest of system

– Data integrity:
• 3 replicas: write local -> write off-rack -> write on-the-other-rack -> return

• Default:  flat network == all nodes of cluster are in one rack

• Topology program (provided by you) gives network information
– hadoop-site.xml parameter: topology.script.file.name
– Input:  IP address   Output: /rack information

* or perhaps gettext(“prioritization”) ?
9



Yahoo! @ ApacheCon 

Rack Awareness Example

• Four racks of /26 networks: 
– 192.168.1.1-63, 192.168.1.65-127, 
– 192.168.1.129-191, 192.168.1.193-254

• Four hosts on those racks:
– sleepy  192.168.1.20       mars    192.168.1.73
– frodo    192.168.1.145     athena 192.168.1.243

10

Host to lookup Topology Input Topology Output

sleepy 192.168.1.20 /192.168.1.0

frodo 192.168.1.145 /192.168.1.128

mars 192.168.1.73 /192.168.1.64

athena 192.168.1.243 /192.168.1.192



Yahoo! @ ApacheCon 

Rebalancing Your HDFS (HADOOP-1652)

• Time passes
– Blocks Added/Deleted 
– New Racks/Nodes

• Rebalancing places blocks uniformly across nodes
– throttled so not to saturate network or name node
– live operation; does not block normal work

• hadoop balancer [ -t <threshold> ]
– (see also bin/start-balancer.sh)
– threshold is % of over/under average utilization

• 0 = perfect balance = balancer will likely not ever finish
– Bandwidth Limited: 5 MB/s default, dfs.balance.bandwidthPerSec

• per datanode setting, need to bounce datanode proc after changing!

• When to rebalance?
11



Yahoo! @ ApacheCon 

HDFS Reporting

• “What nodes are in what racks?”
• “How balanced is the data across the nodes?”
• “How much space is really used?”

• The big question is really:

“What is the health of my HDFS?”

• Primary tools
– hadoop dfsadmin -fsck
– hadoop dfsadmin -report
– namenode status web page

12



Yahoo! @ ApacheCon 

hadoop fsck /

• Checks status of blocks, files and directories on the file system
– Hint: Partial checks ok; provide path other than /
– Hint: Run this nightly to watch for corruption

• Common Output:
– A bunch of dots

• Good blocks
– Under replicated blk_XXXX. Target Replication is X but found Y replica(s)

• Block is under replicated and will be re-replicated by namenode automatically
– Replica placement policy is violated for blk_XXXX.

• Block violates topology; need to fix this manually
– MISSING X blocks of total size Y B

• Block from the file is completely missing

13



Yahoo! @ ApacheCon 

“Good” fsck Summary

 Total size: 506115379265905 B (Total open files size: 4165942598 B)
 Total dirs: 358015

 Total files: 10488573 (Files currently being written: 246)
 Total blocks (validated): 12823618 (avg. block size 39467440 B) (Total 
open file blocks (not validated): 51)

 Minimally replicated blocks: 12823618 (100.00001 %)
 Over-replicated blocks: 25197 (0.196489 %)

 Under-replicated blocks: 9 (7.0183E-5 %)
 Mis-replicated blocks:  1260 (0.00982562 %)
 Default replication factor: 3
 Average block replication: 3.005072

 Corrupt blocks:  0

 Missing replicas:  10 (2.5949832E-5 %)
 Number of data-nodes:  1507

 Number of racks:  42

The filesystem under path '/' is HEALTHY

14



Yahoo! @ ApacheCon 

Bad fsck Summary

Status: CORRUPT

 Total size:    505307372371599 B (Total open files size: 2415919104 B)

 Total dirs:    356465

 Total files:   10416773 (Files currently being written: 478)

 Total blocks (validated):      12763719 (avg. block size 39589352 B) (Total open file blocks (not 
validated): 288)

  ********************************

  CORRUPT FILES:        1

  MISSING BLOCKS:       1

  MISSING SIZE:         91227974 B

  CORRUPT BLOCKS:       1

  ********************************

 Minimally replicated blocks:   12763718 (99.99999 %)

 Over-replicated blocks:        970560 (7.6040535 %)

 Under-replicated blocks:       4 (3.133883E-5 %)

 Mis-replicated blocks:         1299 (0.0101772845 %)

 Default replication factor:    3

 Average block replication:     3.0837624

 Corrupt blocks:                1

 Missing replicas:              5 (1.2703163E-5 %)

 Number of data-nodes:          1509

 Number of racks:               42

The filesystem under path '/' is CORRUPT

15



Yahoo! @ ApacheCon 

dfsadmin -report Example

• hadoop dfsadmin -report

Total raw bytes: 2338785117544448 (2.08 PB)
Remaining raw bytes: 237713230031670 (216.2 TB)

Used raw bytes: 1538976032374394 (1.37 PB)
% used: 65.8%

Total effective bytes: 0 (0 KB)

Effective replication multiplier: Infinity
-------------------------------------------------

Datanodes available: 1618

Name: 192.168.1.153:50010
Rack: /192.168.1.128
State          : In Service

Total raw bytes: 1959385432064 (1.78 TB)
Remaining raw bytes: 234818330641(218.69 GB)

Used raw bytes: 1313761392777 (1.19 TB)
% used: 67.05%

Last contact: Thu Feb 19 21:57:01 UTC 2009

16



Yahoo! @ ApacheCon 

NameNode Status

17



Yahoo! @ ApacheCon 

The Not So Secret Life of the NameNode

• Manages HDFS Metadata
– in-memory  (Java heap determines size of HDFS!)
– on-disk

• Image file 
– static version that gets re-read on startup

• Edits file
– log of changes to the static version since startup
– Restarting namenode applies edits to the image file

• hadoop-site.xml:
<property>
  <name>dfs.name.dir</name>

  <value>/hadoop/var/hdfs/name</value>
</property>

18



Yahoo! @ ApacheCon 

NameNode: Your Single Point of Failure

• When NameNode dies, so does HDFS

• In practice, does not happen very often

• Multiple directories can be used for the on-disk image
–  <value>/hadoop0/var/hdfs/name,/hadoop1/var/hdfs/name</value>
– sequentially written
– 2nd directory on NFS means always having a copy

• Hint: Watch the disk space!
– Namenode logs
– image and edits file
– audit logs (more on that later)

19



Yahoo! @ ApacheCon 

Why NameNodes Fail

• Usually not a crash; brownout
– Hint: Monitoring

• Checking for dead process is a 
fail

• Must check for service!

• Bugs
– No, really.

• Hardware
– Chances are low

• Misconfiguration
– Not enough Java heap
– Not enough physical RAM

• swap=death

• As HDFS approaches full 
DataNodes cannot write add’l 
blocks
– inability to replicate can send 

NameNode into death spiral

• Users doing bad things

20

X X

 /\/\/\/\/\



Yahoo! @ ApacheCon 

HDFS NameNode Recovery

• When NN dies, bring up namenode on another machine
– mount image file from NFS
– create local directory path
– change config to point to new name node
– restart HDFS
– NameNode process will populate local dir path with copy of NFS version

• Hint: Use an A/CNAME with small TTL for namenode in hadoop-
site.xml
– Move the A/CNAME to the new namenode

• No config changes required on individual nodes
– For CNAMEs, restart the DataNodes to pick up changes

• See HADOOP-3988 for details

• But what about the secondary?

21



Yahoo! @ ApacheCon 

Secondary NameNode: Enabling Fast 
Restarts

• NOT High Availability

• Merge the edits file and image file without namenode restart
– Service is down until merge is finished when run on the primary
– Secondary does this live with no downtime

• Optional, but for sizable grids, this should run
– 40g edits file will take ~6hrs to process

• Weeks worth of changes from 800 users on a 5PB HDFS

• Requires the same hardware config as namenode
– due to some issues with forking, may require more memory 

• swap is fine here..
• HADOOP-4998 and HADOOP-5059 have some discussion of the issues

22



Yahoo! @ ApacheCon 

Herding Cats... err.. Users

• Major user-created problems
– Too many metadata operations
– Too many files
– Too many blocks

• Namespace quotas (0.18 HADOOP-3187)
– Limit the number of files per directory 
– hadoop dfsadmin -setQuota # dir1 [dir2 ... dirn]
– hadoop dfsadmin -clrQuota dir1 [dir2 ... dirn]

• Size quotas (0.19 HADOOP-3938, 0.18 HADOOP-5158)
– Limit the total space used in a directory
– hadoop dfsadmin -setspaceQuota # dir1 [dir2 ... dirn]

• defaults to bytes, but can use abbreviations (e.g., 200g)
– hadoop dfsadmin -clrspaceQuota dir1 [dir2 ... dirn]

23



Yahoo! @ ApacheCon 

More on Quotas

• Reminder: Directory-based, not User-based
– /some/directory/path has a limit
– user allen does not

• No defaults
– User creation scripts need to set “default” quota

• No config file
– Store as part of the metadata
– HDFS must be up; no offline quota management

• Quota Reporting
– hadoop fs -count -q dir1 [dir2 ...]
– There is no “give me all quotas on the system” command

• HADOOP-5290

24



Yahoo! @ ApacheCon 

Trash, The Silent Killer That Users Love

• Recovery of multi-TB files is hard

• hadoop fs -rm / client-side only feature
– MR, Java API will not use .Trash

• Deleted files sent to HOMEDIR/.Trash/Current
– “poor man’s snapshot”
– hadoop-site.xml: fs.trash.interval

• Number of minutes between cleanings

• Typical scenario:
– Running out of space
– Users delete massive amounts of files
– Still out of space
– Need to remove files out of trash to reclaim

25



Yahoo! @ ApacheCon 

Hadoop Permission System

• “Inspired” by POSIX and AFS
– users, groups, world
– read/write/execute
– Group inheritance

• User and Group
– Retrieved from client
– Output of whoami, id, groups

• hadoop-site.xml:  dfs.umask
– umask used when creating files/dirs
– Decimal, not octal

• 63 not 077

26



Yahoo! @ ApacheCon 

HADOOP IS NOT SECURE! RUN FOR 
YOUR LIVES!

• Server never checks client info

• Permission checking is easily circumvented
– App asks namenode for block #’s that make up file (regardless of read perms)
– App asks datanode for those blocks

• Strategy 1:  Who cares?

• Strategy 2: User/Data Separation
– Firewall around Hadoop
– Provision users only on grids with data they can use
– Trust your users not to break the rules

27



Yahoo! @ ApacheCon 

Audit Logs  (HADOOP-3336)

• When, Who, Where, How, What

2009-02-27 00:00:00,299 INFO org.apache.hadoop.fs.FSNamesystem.audit: 
ugi=allenw,users ip=/192.168.1.100 cmd=create src=/project/cool/data/
file1 dst=null perm=allenw:users:rw-------

• log4j.properties
 log4j.logger.org.apache.hadoop.fs.FSNamesystem.audit=INFO,DRFAAUDIT
 log4j.additivity.org.apache.hadoop.fs.FSNamesystem.audit=false
 log4j.appender.DRFAAUDIT=org.apache.log4j.DailyRollingFileAppender

 log4j.appender.DRFAAUDIT.File=/var/log/hadoop-audit.log
 log4j.appender.DRFAAUDIT.DatePattern=.yyyy-MM-dd

 log4j.appender.DRFAAUDIT.layout=org.apache.log4j.PatternLayout

 log4j.appender.DRFAAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n

28



Yahoo! @ ApacheCon 

Multiple Grids

• Needed for
– Security
– Data redundancy

• How separate should they be?
– Separate user for namenode, datanode, etc, processes?
– Separate ssh keys?
– Separate home directories for users?

• Data redundancy
– Dedicated loading machines
– Copying data between grids

29



Yahoo! @ ApacheCon 

distcp - distributed copy

• hadoop distcp [flags] URL [URL ...] URL
– submits a map/reduce job to copy directories/files

• hadoop distcp hdfs://nn1:8020/full/path hdfs://nn2:8020/another/path
– copies block by block using Hadoop RPC
– very fast

• Important flags
– p = preserve various attributes, except modification time
– i = ignore failures
– log = write to a log file
– m = number of copies (maps)

• very easy to flood network if too many maps are used!
– filelimit / sizelimit = limits the quantity of data to be copied

• Another safety check against eating all bandwidth

30



Yahoo! @ ApacheCon 

Copying Data Between Hadoop Versions

• hdfs method uses Hadoop RPC
– versions of Hadoop must match!

• hadoop distcp hftp://nn1:50070/path/to/a/file hdfs://nn2:8020/another/
path
– file-level copy
– slow
– fairly version independent
– must run on destination cluster
– cannot write via hftp

• Uses a single port for copying

31



Q & A



33


