m"

Hadoop 24/7

Allen Wittenauer
March 25, 2009

Dear SysAdmin,

Please set up Hadoop
using these machines. Let
us know when they are
ready for use.

Thanks,
The Users

9! Install some nodes with Hadoop...

Yahoo! @ ApacheCon

9_’ Individual Node Configuration

MapReduce slots tied to # of cores
VS. memory

DataNode reads/writes spread
(statistically) even across drives

hadoop-site.xml dfs.data.dir:
<property>
<name>dfs.data.dir</name>
<value>/hadoop0, /hadoopl,
/hadoop?2, /hadoop3</value>
</property>

RAID

— If any, mirror NameNode only
— Slows DataNode in most configurations

Generic 1U

. i

root,

\/hadoopo/

. i

swap,

. i

swap,

__/hadoop2

_ /hadoop1 |

. i

swap,

__/hadoop3 |

9.’ NameNode’s Lists of Nodes

slaves
— used by start-*.sh/stop-*.sh

dfs.include
— IPs or FQDNSs of hosts allowed in the HDFS

dfs.exclude
— |Ps or FQDNs of hosts to ignore

active datanode list=include list-exclude list
— Dead list in NameNode Status

Yahoo! @ ApacheCon

’ Adding/Removing DataNodes
= Dynamically

 Add nodes
— Add new nodes to dfs.include

* (Temporarily) Remove Nodes
— Add nodes to dfs.exclude

« Update Node Lists and Decommission
— hadoop dfsadmin -refreshNodes
» Replicates blocks from any live nodes in the exclude list

— Hint: Do not decommission too many nodes (200+) at once! Very easy to
saturate namenode!

Yahoo! @ ApacheCon

9_’ Racks Of Nodes

« Each node
— 1 connection to network switch
— 1 connection to console server

 Dedicated
— Name Nodes

— Job Tackers
— Data Loaders

« More and More Racks...

Switch

Console

Generic 1U

Generic 1U

Generic 1U

Generic 1U

g

Generic 1U

Generic 1U

Generic 1U

Generic 1U

9_’ Networks of Racks, the Yahoo! Way

Core
Switch

Core
Switch

Core
Switch

Core
Switch

40 hosts/racks—»

H

H

H

 Each switch connected to a

bigger switch

* Physically, one big network

H{|H|H

* Loss of one core covered by
redundant connections

* Logically, lots of small
networks (netmask /26)

9_’ Rack Awareness (HADOOP-692)

« Hadoop needs node layout (really network) information
— Speed:
 read/write prioriti[sz]ation (*)
— local node

— local rack
— rest of system

— Data integrity:
» 3 replicas: write local -> write off-rack -> write on-the-other-rack -> return

 Default: flat network == all nodes of cluster are in one rack

» Topology program (provided by you) gives network information
— hadoop-site.xml parameter: topology.script.file.name
— Input: IP address Output: /rack information

* or perhaps gettext(“prioritization”) ?

9_’ Rack Awareness Example

 Four racks of /26 networks:
— 192.168.1.1-63, 192.168.1.65-127,
— 192.168.1.129-191, 192.168.1.193-254

 Four hosts on those racks:

— sleepy 192.168.1.20 mars 192.168.1.73
— frodo 192.168.1.145 athena 192.168.1.243

Host to lookup Topology Input Topology Output

sleepy 192.168.1.20 /192.168.1.0
frodo 192.168.1.145 /192.168.1.128
mars 192.168.1.73 /192.168.1.64
athena 192.168.1.243 /192.168.1.192

9_’ Rebalancing Your HDFS (HADOOP-1652)

Time passes
— Blocks Added/Deleted
— New Racks/Nodes

Rebalancing places blocks uniformly across nodes
— throttled so not to saturate network or name node
— live operation; does not block normal work

hadoop balancer [-t <threshold>]
— (see also bin/start-balancer.sh)

— threshold is % of over/under average utilization
» 0 = perfect balance = balancer will likely not ever finish

— Bandwidth Limited: 5 MB/s default, dfs.balance.bandwidthPerSec
 per datanode setting, need to bounce datanode proc after changing!

When to rebalance?

9_’ HDFS Reporting

“What nodes are in what racks?”
“How balanced is the data across the nodes?”
“How much space is really used?”

The big question is really:

“What is the health of my HDFS?”

Primary tools
— hadoop dfsadmin -fsck
— hadoop dfsadmin -report
— namenode status web page

9_’ hadoop fsck /

* Checks status of blocks, files and directories on the file system
— Hint: Partial checks ok; provide path other than /
— Hint: Run this nightly to watch for corruption

« Common Output:
— A bunch of dots
« Good blocks
— Under replicated blk_ XXXX. Target Replication is X but found Y replica(s)
» Block is under replicated and will be re-replicated by namenode automatically
— Replica placement policy is violated for blk_XXXX.
 Block violates topology; need to fix this manually
— MISSING X blocks of total size Y B
 Block from the file is completely missing

@’ “Good” fsck Summary

Total size: 506115379265905 B (Total open files size: 4165942598 B)
Total dirs: 358015
Total files: 10488573 (Files currently being written: 246)

Total blocks (validated) : 12823618 (avg. block size 39467440 B) (Total
open file blocks (not wvalidated): 51)

Minimally replicated blocks: 12823618 (100.00001 %)
Over-replicated blocks: 25197 (0.196489 %)
Under-replicated blocks: 9 (7.0183E-5 %)

Mis-replicated blocks: 1260 (0.00982562 %)
Default replication factor: 3

Average block replication: 3.005072

Corrupt blocks: 0

Missing replicas: 10 (2.5949832E-5 %)
Number of data-nodes: 1507

Number of racks: 42

The filesystem under path '/' is HEALTHY

Yahoo! @ ApacheCon

Status: CORRUPT
Total size: 505307372371599 B (Total open files size: 2415919104 B)
Total dirs: 356465
Total files: 10416773 (Files currently being written: 478)

Total blocks (validated): 12763719 (avg. block size 39589352 B) (Total open file blocks (not
validated): 288)

Kk ok &k ok k k ok k ok ok k ok ok ko &k ok k ko k ko k ok Kk ok ok
CORRUPT FILES: 1
MISSING BLOCKS: 1
MISSING SIZE: 91227974 B
CORRUPT BLOCKS: 1

LRI I R b I b b 2 b b b b I b b A b b A b b A b b g b i 4

Minimally replicated blocks: 12763718 (99.99999 %)
Over-replicated blocks: 970560 (7.6040535 %)
Under-replicated blocks: 4 (3.133883E-5 %)
Mis-replicated blocks: 1299 (0.0101772845 %)
Default replication factor: 3

Average block replication: 3.0837624

Corrupt blocks: 1

Missing replicas: 5 (1.2703163E-5 %)
Number of data-nodes: 1509

Number of racks: 42

The filesystem under path '/' is CORRUPT
Yahoo! @ ApacheCon

9’ dfsadmin -report Example

hadoop dfsadmin -report

Total raw bytes: 2338785117544448 (2.08 PB)
Remaining raw bytes: 237713230031670 (216.2 TB)
Used raw bytes: 1538976032374394 (1.37 PB)

% used: 65.8%

Total effective bytes: 0 (0 KB)

Effective replication multiplier: Infinity

Datanodes available: 1618

Name: 192.168.1.153:50010

Rack: /192.168.1.128

State : In Service

Total raw bytes: 1959385432064 (1.78 TB)

Remaining raw bytes: 234818330641 (218.69 GB)

Used raw bytes: 1313761392777 (1.19 TB)
used: 67.05%

Last contact: Thu Feb 19 21:57:01 UTC 2009

Yahoo! @ ApacheCon

e’ NameNode Status

NameNode 'mynamenode.example.com:8020"

Started: Wed Feb 04 16:18:50 UTC 2009

Version: 0.18.3-2486615, r

Compiled: Thu Jan 29 16:43:04 UTC 2009 by hadoopqa
Upgrades: There are no upgrades in progress.

Browse the filesystem

Cluster Summary

Capacity : 2.08 PB
DFS Remaining : 216.08 TB
DFS Used : 1.37 PB
DFS Used% . 65.81 %
Live Nodes : 1403
Dead Nodes X 215

10877074 files and directories, 12860721 blocks = 23737795 total. Heap Size is 13.57 GB / 13.57 GB (100%)

Live Datanodes : 1403

Last Admin
Node Contact State

Used (%)

Remaining
(TB)

Blocks

sleepy In Service

0.11

25705

dopey In Service

0.12

26399

grumpy In Service

0.11

25789

Yahoo! @ ApacheCon

9.’ The Not So Secret Life of the NameNode

Manages HDFS Metadata

— in-memory (Java heap determines size of HDFS!)
— on-disk

Image file
— static version that gets re-read on startup

Edits file

— log of changes to the static version since startup
— Restarting namenode applies edits to the image file

hadoop-site.xml:
<property>
<name>dfs.name.dir</name>
<value>/hadoop/var/hdfs/name</value>
</property>

Yahoo! @ ApacheCon

9.’ NameNode: Your Single Point of Failure

When NameNode dies, so does HDFS

In practice, does not happen very often

Multiple directories can be used for the on-disk image

— <value>/hadoop0O/var/hdfs/name, /hadoopl/var/hdfs/name</value>
— sequentially written

— 2nd directory on NFS means always having a copy

Hint: Watch the disk space!
— Namenode logs

— image and edits file

— audit logs (more on that later)

Yahoo! @ ApacheCon

9_’ Why NameNodes Falil

* Usually not a crash; brownout * Misconfiguration
— Hint: Monitoring

« Checking for dead process is a
fail

— Not enough Java heap

— Not enough physical RAM

« swap=death
 Must check for service!

 As HDFS approaches full

* Bugs DataNodes cannot write add’l
— No, really. blocks

— Inability to replicate can send
. Hardware NameNode into death spiral

— Chances are low

« Users doing bad things

9_’ HDFS NameNode Recovery

 When NN dies, bring up namenode on another machine
— mount image file from NFS
— create local directory path
— change config to point to new name node
— restart HDFS
— NameNode process will populate local dir path with copy of NFS version

« Hint: Use an A/ICNAME with small TTL for namenode in hadoop-
site.xml|

— Move the A/ICNAME to the new namenode
* No config changes required on individual nodes

— For CNAMEs, restart the DataNodes to pick up changes
« See HADOOP-3988 for details

« But what about the secondary?

’ Secondary NameNode: Enabling Fast
w Restarts

NOT High Availability

Merge the edits file and image file without namenode restart
— Service is down until merge is finished when run on the primary
— Secondary does this live with no downtime

Optional, but for sizable grids, this should run

— 409 edits file will take ~6hrs to process
« Weeks worth of changes from 800 users on a 5PB HDFS

Requires the same hardware config as namenode

— due to some issues with forking, may require more memory

« swap is fine here..
« HADOOP-4998 and HADOOP-5059 have some discussion of the issues

9_’ Herding Cats... err.. Users

* Major user-created problems
— Too many metadata operations
— Too many files
— Too many blocks

 Namespace quotas (0.18 HADOOP-3187)

— Limit the number of files per directory
— hadoop dfsadmin -setQuota # dir1 [dir2 ... dirn]
— hadoop dfsadmin -clrQuota dir1 [dir2 ... dirn]

 Size quotas (0.19 HADOOP-3938, 0.18 HADOOP-5158)

— Limit the total space used in a directory

— hadoop dfsadmin -setspaceQuota # dir1 [dir2 ... dirn]
 defaults to bytes, but can use abbreviations (e.g., 2009g)

— hadoop dfsadmin -clrspaceQuota dir1 [dir2 ... dirn]

9_’ More on Quotas

Reminder: Directory-based, not User-based
— /some/directory/path has a limit
— user allen does not

No defaults
— User creation scripts need to set “default” quota

No config file
— Store as part of the metadata
— HDFS must be up; no offline quota management

Quota Reporting
— hadoop fs -count -q dir1 [dir2 ...]

— There is no “give me all quotas on the system” command
« HADOOP-5290

9.’ Trash, The Silent Killer That Users Love

Recovery of multi-TB files is hard

hadoop fs -rm / client-side only feature
— MR, Java API will not use .Trash

Deleted files sent to HOMEDIR/.Trash/Current

— “poor man’s snapshot”

— hadoop-site.xml: fs.trash.interval
« Number of minutes between cleanings

Typical scenario:

— Running out of space

— Users delete massive amounts of files

— Still out of space

— Need to remove files out of trash to reclaim

9.’ Hadoop Permission System

* “Inspired” by POSIX and AFS

— users, groups, world
— read/write/execute
— Group inheritance

« User and Group
— Retrieved from client
— Output of whoami, id, groups

* hadoop-site.xml: dfs.umask
— umask used when creating files/dirs

— Decimal, not octal
* 63 not 077

Yahoo! @ ApacheCon

’ HADOOP IS NOT SECURE! RUN FOR
Vo YOUR LIVES!

Server never checks client info

Permission checking is easily circumvented
— App asks namenode for block #'s that make up file (regardless of read perms)
— App asks datanode for those blocks

Strategy 1. Who cares?

Strategy 2: User/Data Separation
— Firewall around Hadoop

— Provision users only on grids with data they can use
— Trust your users not to break the rules

Yahoo! @ ApacheCon

@’ Audit Logs (HADOOP-3336)

When, Who, Where, How, What

2009-02-27 00:00:00,299 INFO org.apache.hadoop.fs.FSNamesystem.audit:
ugi=allenw,users ip=/192.168.1.100 cmd=create src=/project/cool/data/
filel dst=null perm=allenw:users:rw

* log4j.properties

log4d4j.logger.org.apache.hadoop.fs.FSNamesystem.audit=INFO, DRFAAUDIT
log4j.additivity.org.apache.hadoop.fs.FSNamesystem.audit=false
log4j.appender.DRFAAUDIT=0rg.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFAAUDIT.File=/var/log/hadoop-audit.log
log4dj.appender .DRFAAUDIT.DatePattern=.yyyy-MM-dd

log4j.appender .DRFAAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender .DRFAAUDIT. layout.ConversionPattern=%5d{IS08601}

Yahoo! @ ApacheCon

9.’ Multiple Grids

 Needed for

— Security
— Data redundancy

 How separate should they be?
— Separate user for namenode, datanode, etc, processes?
— Separate ssh keys?
— Separate home directories for users?

« Data redundancy
— Dedicated loading machines
— Copying data between grids

9_’ distcp - distributed copy

* hadoop distcp [flags] URL [URL ...] URL

— submits a map/reduce job to copy directories/files

* hadoop distcp hdfs://nn1:8020/full/path hdfs://nn2:8020/another/path

— copies block by block using Hadoop RPC
— very fast

* Important flags
— p = preserve various attributes, except modification time
— i =ignore failures
— log = write to a log file
— m = number of copies (maps)
* very easy to flood network if too many maps are used!

— filelimit / sizelimit = limits the quantity of data to be copied
« Another safety check against eating all bandwidth

9_’ Copying Data Between Hadoop Versions

* hdfs method uses Hadoop RPC
— versions of Hadoop must match!

* hadoop distcp hftp://nn1:50070/path/to/alfile hdfs://nn2:8020/another/
path

— file-level copy

— slow

— fairly version independent

— must run on destination cluster
— cannot write via hftp

» Uses a single port for copying

Yahoo! @ ApacheCon

Q&A

