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Dear SysAdmin,

Please set up Hadoop
using these machines. Let
us know when they are
ready for use.

Thanks,
The Users




9! Install some nodes with Hadoop...

Yahoo! @ ApacheCon



9_’ Individual Node Configuration

MapReduce slots tied to # of cores
VS. memory

DataNode reads/writes spread
(statistically) even across drives

hadoop-site.xml dfs.data.dir:
<property>
<name>dfs.data.dir</name>
<value>/hadoop0, /hadoopl,
/hadoop?2, /hadoop3</value>
</property>

RAID

— If any, mirror NameNode only
— Slows DataNode in most configurations

Generic 1U

. i

root,

\/hadoopo/

. i

swap,

. i

swap,

__/hadoop2

_ /hadoop1 |

. i

swap,

__/hadoop3 |




9.’ NameNode’s Lists of Nodes

slaves
— used by start-*.sh/stop-*.sh

dfs.include
— IPs or FQDNSs of hosts allowed in the HDFS

dfs.exclude
— |Ps or FQDNs of hosts to ignore

active datanode list=include list-exclude list
— Dead list in NameNode Status

Yahoo! @ ApacheCon



’ Adding/Removing DataNodes
= Dynamically

 Add nodes
— Add new nodes to dfs.include

* (Temporarily) Remove Nodes
— Add nodes to dfs.exclude

« Update Node Lists and Decommission
— hadoop dfsadmin -refreshNodes
» Replicates blocks from any live nodes in the exclude list

— Hint: Do not decommission too many nodes (200+) at once! Very easy to
saturate namenode!

Yahoo! @ ApacheCon



9_’ Racks Of Nodes

« Each node
— 1 connection to network switch
— 1 connection to console server

 Dedicated
— Name Nodes

— Job Tackers
— Data Loaders

« More and More Racks...

Switch

Console

Generic 1U

Generic 1U

Generic 1U

Generic 1U

g

Generic 1U

Generic 1U

Generic 1U

Generic 1U




9_’ Networks of Racks, the Yahoo! Way

Core
Switch

Core
Switch

Core
Switch

Core
Switch

40 hosts/racks—»

H

H

H

 Each switch connected to a

bigger switch

* Physically, one big network

H{|H|H

* Loss of one core covered by
redundant connections

* Logically, lots of small
networks (netmask /26)




9_’ Rack Awareness (HADOOP-692)

« Hadoop needs node layout (really network) information
— Speed:
 read/write prioriti[sz]ation (*)
— local node

— local rack
— rest of system

— Data integrity:
» 3 replicas: write local -> write off-rack -> write on-the-other-rack -> return

 Default: flat network == all nodes of cluster are in one rack

» Topology program (provided by you) gives network information
— hadoop-site.xml parameter: topology.script.file.name
— Input: IP address Output: /rack information

* or perhaps gettext(“prioritization”) ?




9_’ Rack Awareness Example

 Four racks of /26 networks:
— 192.168.1.1-63, 192.168.1.65-127,
— 192.168.1.129-191, 192.168.1.193-254

 Four hosts on those racks:

— sleepy 192.168.1.20 mars 192.168.1.73
— frodo 192.168.1.145 athena 192.168.1.243

Host to lookup Topology Input Topology Output

sleepy 192.168.1.20 /192.168.1.0
frodo 192.168.1.145 /192.168.1.128
mars 192.168.1.73 /192.168.1.64
athena 192.168.1.243 /192.168.1.192




9_’ Rebalancing Your HDFS (HADOOP-1652)

Time passes
— Blocks Added/Deleted
— New Racks/Nodes

Rebalancing places blocks uniformly across nodes
— throttled so not to saturate network or name node
— live operation; does not block normal work

hadoop balancer [ -t <threshold> ]
— (see also bin/start-balancer.sh)

— threshold is % of over/under average utilization
» 0 = perfect balance = balancer will likely not ever finish

— Bandwidth Limited: 5 MB/s default, dfs.balance.bandwidthPerSec
 per datanode setting, need to bounce datanode proc after changing!

When to rebalance?




9_’ HDFS Reporting

“What nodes are in what racks?”
“How balanced is the data across the nodes?”
“How much space is really used?”

The big question is really:

“What is the health of my HDFS?”

Primary tools
— hadoop dfsadmin -fsck
— hadoop dfsadmin -report
— namenode status web page




9_’ hadoop fsck /

* Checks status of blocks, files and directories on the file system
— Hint: Partial checks ok; provide path other than /
— Hint: Run this nightly to watch for corruption

« Common Output:
— A bunch of dots
« Good blocks
— Under replicated blk_ XXXX. Target Replication is X but found Y replica(s)
» Block is under replicated and will be re-replicated by namenode automatically
— Replica placement policy is violated for blk_XXXX.
 Block violates topology; need to fix this manually
— MISSING X blocks of total size Y B
 Block from the file is completely missing




@’ “Good” fsck Summary

Total size: 506115379265905 B (Total open files size: 4165942598 B)
Total dirs: 358015
Total files: 10488573 (Files currently being written: 246)

Total blocks (validated) : 12823618 (avg. block size 39467440 B) (Total
open file blocks (not wvalidated): 51)

Minimally replicated blocks: 12823618 (100.00001 %)
Over-replicated blocks: 25197 (0.196489 %)
Under-replicated blocks: 9 (7.0183E-5 %)

Mis-replicated blocks: 1260 (0.00982562 %)
Default replication factor: 3

Average block replication: 3.005072

Corrupt blocks: 0

Missing replicas: 10 (2.5949832E-5 %)
Number of data-nodes: 1507

Number of racks: 42

The filesystem under path '/' is HEALTHY

Yahoo! @ ApacheCon




Status: CORRUPT
Total size: 505307372371599 B (Total open files size: 2415919104 B)
Total dirs: 356465
Total files: 10416773 (Files currently being written: 478)

Total blocks (validated): 12763719 (avg. block size 39589352 B) (Total open file blocks (not
validated): 288)

Kk ok &k ok k k ok k ok ok k ok ok ko &k ok k ko k ko k ok Kk ok ok
CORRUPT FILES: 1
MISSING BLOCKS: 1
MISSING SIZE: 91227974 B
CORRUPT BLOCKS: 1

LRI I R b I b b 2 b b b b I b b A b b A b b A b b g b i 4

Minimally replicated blocks: 12763718 (99.99999 %)
Over-replicated blocks: 970560 (7.6040535 %)
Under-replicated blocks: 4 (3.133883E-5 %)
Mis-replicated blocks: 1299 (0.0101772845 %)
Default replication factor: 3

Average block replication: 3.0837624

Corrupt blocks: 1

Missing replicas: 5 (1.2703163E-5 %)
Number of data-nodes: 1509

Number of racks: 42

The filesystem under path '/' is CORRUPT
Yahoo! @ ApacheCon




9’ dfsadmin -report Example

hadoop dfsadmin -report

Total raw bytes: 2338785117544448 (2.08 PB)
Remaining raw bytes: 237713230031670 (216.2 TB)
Used raw bytes: 1538976032374394 (1.37 PB)

% used: 65.8%

Total effective bytes: 0 (0 KB)

Effective replication multiplier: Infinity

Datanodes available: 1618

Name: 192.168.1.153:50010

Rack: /192.168.1.128

State : In Service

Total raw bytes: 1959385432064 (1.78 TB)

Remaining raw bytes: 234818330641 (218.69 GB)

Used raw bytes: 1313761392777 (1.19 TB)
used: 67.05%

Last contact: Thu Feb 19 21:57:01 UTC 2009

Yahoo! @ ApacheCon



e’ NameNode Status

NameNode 'mynamenode.example.com:8020"

Started: Wed Feb 04 16:18:50 UTC 2009

Version: 0.18.3-2486615, r

Compiled: Thu Jan 29 16:43:04 UTC 2009 by hadoopqa
Upgrades: There are no upgrades in progress.

Browse the filesystem

Cluster Summary

Capacity : 2.08 PB
DFS Remaining : 216.08 TB
DFS Used : 1.37 PB
DFS Used% . 65.81 %
Live Nodes : 1403
Dead Nodes X 215

10877074 files and directories, 12860721 blocks = 23737795 total. Heap Size is 13.57 GB / 13.57 GB (100%)

Live Datanodes : 1403

Last Admin
Node Contact State

Used (%)

Remaining
(TB)

Blocks

sleepy In Service

0.11

25705

dopey In Service

0.12

26399

grumpy In Service

0.11

25789

Yahoo! @ ApacheCon




9.’ The Not So Secret Life of the NameNode

Manages HDFS Metadata

— in-memory (Java heap determines size of HDFS!)
— on-disk

Image file
— static version that gets re-read on startup

Edits file

— log of changes to the static version since startup
— Restarting namenode applies edits to the image file

hadoop-site.xml:
<property>
<name>dfs.name.dir</name>
<value>/hadoop/var/hdfs/name</value>
</property>

Yahoo! @ ApacheCon



9.’ NameNode: Your Single Point of Failure

When NameNode dies, so does HDFS

In practice, does not happen very often

Multiple directories can be used for the on-disk image

— <value>/hadoop0O/var/hdfs/name, /hadoopl/var/hdfs/name</value>
— sequentially written

— 2nd directory on NFS means always having a copy

Hint: Watch the disk space!
— Namenode logs

— image and edits file

— audit logs (more on that later)

Yahoo! @ ApacheCon



9_’ Why NameNodes Falil

* Usually not a crash; brownout * Misconfiguration
— Hint: Monitoring

« Checking for dead process is a
fail

— Not enough Java heap

— Not enough physical RAM

« swap=death
 Must check for service!

 As HDFS approaches full

* Bugs DataNodes cannot write add’l
— No, really. blocks

— Inability to replicate can send
. Hardware NameNode into death spiral

— Chances are low

« Users doing bad things




9_’ HDFS NameNode Recovery

 When NN dies, bring up namenode on another machine
— mount image file from NFS
— create local directory path
— change config to point to new name node
— restart HDFS
— NameNode process will populate local dir path with copy of NFS version

« Hint: Use an A/ICNAME with small TTL for namenode in hadoop-
site.xml|

— Move the A/ICNAME to the new namenode
* No config changes required on individual nodes

— For CNAMEs, restart the DataNodes to pick up changes
« See HADOOP-3988 for details

« But what about the secondary?




’ Secondary NameNode: Enabling Fast
w Restarts

NOT High Availability

Merge the edits file and image file without namenode restart
— Service is down until merge is finished when run on the primary
— Secondary does this live with no downtime

Optional, but for sizable grids, this should run

— 409 edits file will take ~6hrs to process
« Weeks worth of changes from 800 users on a 5PB HDFS

Requires the same hardware config as namenode

— due to some issues with forking, may require more memory

« swap is fine here..
« HADOOP-4998 and HADOOP-5059 have some discussion of the issues




9_’ Herding Cats... err.. Users

* Major user-created problems
— Too many metadata operations
— Too many files
— Too many blocks

 Namespace quotas (0.18 HADOOP-3187)

— Limit the number of files per directory
— hadoop dfsadmin -setQuota # dir1 [dir2 ... dirn]
— hadoop dfsadmin -clrQuota dir1 [dir2 ... dirn]

 Size quotas (0.19 HADOOP-3938, 0.18 HADOOP-5158)

— Limit the total space used in a directory

— hadoop dfsadmin -setspaceQuota # dir1 [dir2 ... dirn]
 defaults to bytes, but can use abbreviations (e.g., 2009g)

— hadoop dfsadmin -clrspaceQuota dir1 [dir2 ... dirn]




9_’ More on Quotas

Reminder: Directory-based, not User-based
— /some/directory/path has a limit
— user allen does not

No defaults
— User creation scripts need to set “default” quota

No config file
— Store as part of the metadata
— HDFS must be up; no offline quota management

Quota Reporting
— hadoop fs -count -q dir1 [dir2 ...]

— There is no “give me all quotas on the system” command
« HADOOP-5290




9.’ Trash, The Silent Killer That Users Love

Recovery of multi-TB files is hard

hadoop fs -rm / client-side only feature
— MR, Java API will not use .Trash

Deleted files sent to HOMEDIR/.Trash/Current

— “poor man’s snapshot”

— hadoop-site.xml: fs.trash.interval
« Number of minutes between cleanings

Typical scenario:

— Running out of space

— Users delete massive amounts of files

— Still out of space

— Need to remove files out of trash to reclaim




9.’ Hadoop Permission System

* “Inspired” by POSIX and AFS

— users, groups, world
— read/write/execute
— Group inheritance

« User and Group
— Retrieved from client
— Output of whoami, id, groups

* hadoop-site.xml: dfs.umask
— umask used when creating files/dirs

— Decimal, not octal
* 63 not 077

Yahoo! @ ApacheCon



’ HADOOP IS NOT SECURE! RUN FOR
Vo YOUR LIVES!

Server never checks client info

Permission checking is easily circumvented
— App asks namenode for block #'s that make up file (regardless of read perms)
— App asks datanode for those blocks

Strategy 1. Who cares?

Strategy 2: User/Data Separation
— Firewall around Hadoop

— Provision users only on grids with data they can use
— Trust your users not to break the rules

Yahoo! @ ApacheCon



@’ Audit Logs (HADOOP-3336)

When, Who, Where, How, What

2009-02-27 00:00:00,299 INFO org.apache.hadoop.fs.FSNamesystem.audit:
ugi=allenw,users ip=/192.168.1.100 cmd=create src=/project/cool/data/
filel dst=null perm=allenw:users:rw

* log4j.properties

log4d4j.logger.org.apache.hadoop.fs.FSNamesystem.audit=INFO, DRFAAUDIT
log4j.additivity.org.apache.hadoop.fs.FSNamesystem.audit=false
log4j.appender.DRFAAUDIT=0rg.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFAAUDIT.File=/var/log/hadoop-audit.log
log4dj.appender .DRFAAUDIT.DatePattern=.yyyy-MM-dd

log4j.appender .DRFAAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender .DRFAAUDIT. layout.ConversionPattern=%5d{IS08601}

Yahoo! @ ApacheCon




9.’ Multiple Grids

 Needed for

— Security
— Data redundancy

 How separate should they be?
— Separate user for namenode, datanode, etc, processes?
— Separate ssh keys?
— Separate home directories for users?

« Data redundancy
— Dedicated loading machines
— Copying data between grids




9_’ distcp - distributed copy

* hadoop distcp [flags] URL [URL ...] URL

— submits a map/reduce job to copy directories/files

* hadoop distcp hdfs://nn1:8020/full/path hdfs://nn2:8020/another/path

— copies block by block using Hadoop RPC
— very fast

* Important flags
— p = preserve various attributes, except modification time
— i =ignore failures
— log = write to a log file
— m = number of copies (maps)
* very easy to flood network if too many maps are used!

— filelimit / sizelimit = limits the quantity of data to be copied
« Another safety check against eating all bandwidth




9_’ Copying Data Between Hadoop Versions

* hdfs method uses Hadoop RPC
— versions of Hadoop must match!

* hadoop distcp hftp://nn1:50070/path/to/alfile hdfs://nn2:8020/another/
path

— file-level copy

— slow

— fairly version independent

— must run on destination cluster
— cannot write via hftp

» Uses a single port for copying

Yahoo! @ ApacheCon



Q&A






