Hadoop Distributed File System

Dhruba Borthakur
Apache Hadoop Project Management Committee

dhruba@apache.org
June 3 2008

CrlhErEEED

Who Am |?

Hadoop Developer

— Core contributor since Hadoop’s infancy

— Focussed on Hadoop Distributed File System
Facebook (Hadoop)

Yahoo! (Hadoop)

Veritas (San Point Direct, VXFS)

IBM Transarc (Andrew File System)

CrlhErEEED

Hadoop, Why?

Need to process huge datasets on large clusters
of computers

Very expensive to build reliability into each
application.

Nodes fail every day

— Failure is expected, rather than exceptional.

— The number of nodes in a cluster is not constant.
Need common infrastructure

— Efficient, reliable, easy to use

— Open Source, Apache License

CrlhErEEED

Hadoop History

Dec 2004 — Google GFS paper published
July 2005 — Nutch uses MapReduce

Jan 2006 — Doug Cutting joins Yahoo!
Feb 2006 — Becomes Lucene subproject
Apr 2007 — Yahoo! on 1000-node cluster
Jan 2008 — An Apache Top Level Project

Feb 2008 — Yahoo! production search index

CrlhErEEED

Who uses Hadoop?

Amazon/A9
Facebook
Google

IBM : Blue Cloud?
Joost

Last.fm

New York Times
PowerSet

Veoh

Yahoo!

CrlhErEEED

Commodity Hardware

<+— 3-4 gigabit
=+— 1| gigabit

: "

E.‘.s.ks | Dq:j
—”j =

Typically in 2 level architecture
— Nodes are commodity PCs

— 30-40 nodes/rack

— Uplink from rack is 3-4 gigabit
— Rack-internal is 1 gigabit

’z
=

CrlEGEEED

Goals of HDFS

Very Large Distributed File System

— 10K nodes, 100 million files, 10 PB

Assumes Commodity Hardware

— Files are replicated to handle hardware failure
— Detect failures and recovers from them
Optimized for Batch Processing

— Data locations exposed so that computations can
move to where data resides

— Provides very high aggregate bandwidth

CrlhErEEED

HDFS Architecture

Cluster Membership

NameNode

Secondary
NameNode

O 00000008 O8O Qe

NameNode : Maps a file to a file-id and list of MapNodes DM

DataNode : Maps a block-id to a physical location on disk
SecondaryNameNode: Periodic merge of Transaction log

Distributed File System

Single Namespace for entire cluster

Data Coherency

— Write-once-read-many access model

— Client can only append to existing files

Files are broken up into blocks

— Typically 128 MB block size

— Each block replicated on multiple DataNodes
Intelligent Client

— Client can find location of blocks

— Client accesses data directly from DataNode

CrlhErEEED

HDFS Architecture

Metadata (Name, replicas, ...):

_ /homeffoo/data, 3, ...
Metadata ops Namenode
Blockwops
Datanodes Datanodes
[- E § |BE
Replication
% a EBlocks
p
k N Y
Rack 1 Rack 2

CThErbED

Functions of a NameNode

Manages File System Namespace

— Maps a file name to a set of blocks
— Maps a block to the DataNodes where it resides

Cluster Configuration Management
Replication Engine for Blocks

CrlhErEEED

NameNode Metadata

« Meta-data in Memory

— The entire metadata is in main memory

— No demand paging of meta-data
« Types of Metadata

— List of files

— List of Blocks for each file

— List of DataNodes for each block

— File attributes, e.g creation time, replication factor
« A Transaction Log

— Records file creations, file deletions. etc

CrlhErEEED

DataNode

* A Block Server
— Stores data in the local file system (e.g. ext3)
— Stores meta-data of a block (e.g. CRC)
— Serves data and meta-data to Clients

* Block Report

— Periodically sends a report of all existing blocks to
the NameNode

« Facilitates Pipelining of Data
— Forwards data to other specified DataNodes

CrlhErEEED

Block Placement

Current Strategy

-- One replica on local node

-- Second replica on a remote rack

-- Third replica on same remote rack

-- Additional replicas are randomly placed
Clients read from nearest replica

Would like to make this policy pluggable

CrlhErEEED

Heartbeats

« DataNodes send heartbeat to the NameNode
— Once every 3 seconds

« NameNode used heartbeats to detect DataNode
failure

CrlhErEEED

Replication Engine

« NameNode detects DataNode failures

— Chooses new DataNodes for new replicas

— Balances disk usage
— Balances communication traffic to DataNodes

CrlhErEEED

Data Correctness

Use Checksums to validate data

— Use CRC32

File Creation

— Client computes checksum per 512 byte
— DataNode stores the checksum

File access

— Client retrieves the data and checksum from
DataNode

— If Validation fails, Client tries other replicas

CrlhErEEED

NameNode Failure

* A single point of failure
« Transaction Log stored in multiple directories

— A directory on the local file system
— A directory on a remote file system (NFS/CIFS)
* Need to develop a real HA solution

CrlhErEEED

Data Pipelining

Client retrieves a list of DataNodes on which to place
replicas of a block

Client writes block to the first DataNode

The first DataNode forwards the data to the next
DataNode in the Pipeline

When all replicas are written, the Client moves on to
write the next block in file

CrlhErEEED

Rebalancer

« Goal: % disk full on DataNodes should be similar
— Usually run when new DataNodes are added
— Cluster is online when Rebalancer is active
— Rebalancer is throttled to avoid network congestion
— Command line tool

CrlhErEEED

Secondary NameNode

Copies Fslmage and Transaction Log from
NameNode to a temporary directory

Merges FSImage and Transaction Log into a new
FSImage in temporary directory

Uploads new FSImage to the NameNode
— Transaction Log on NameNode is purged

CrlhErEEED

User Interface

Command for HDFS User:

— hadoop dfs -mkdir /foodir

— hadoop dfs -cat /foodir/myfile.txt

— hadoop dfs -rm /foodir myfile.txt

Command for HDFS Administrator

— hadoop dfsadmin -report

— hadoop dfsadmin -decommission datanodename
Web Interface

— http://host:port/dfshealth.jsp

CrlhErEEED

Hadoop Map/Reduce

 The Map-Reduce programming model

— Framework for distributed processing of large data
sets

— Pluggable user code runs in generic framework
« Common design pattern in data processing

cat * | grep |sort | unique -c | cat > file

input | map | shuffle | reduce | output
« Natural for:

— Log processing

— Web search indexing

— Ad-hoc queries

CrlhErEEED

Hadoop Subprojects

Pig (Initiated by Yahoo!)

— High-level language for data analysis

HBase (initiated by Powerset)

— Table storage for semi-structured data
Zookeeper (Initiated by Yahoo!)

— Coordinating distributed applications
Hive (initiated by Facebook, coming soon)
— SQL-like Query language and Metastore
Mahout

— Machine learning

CrlhErEEED

Useful Links

HDFS Design:

— http://hadoop.apache.org/core/docs/current/hdfs_design.html
Hadoop API:

— http://hadoop.apache.org/core/docs/current/api/

CrlhErEEED

