
Hadoop Distributed File System

Dhruba Borthakur
Apache Hadoop Project Management Committee 

dhruba@apache.org
June 3rd, 2008



Who Am I?

• Hadoop Developer

– Core contributor since Hadoop’s infancy

– Focussed on Hadoop Distributed File System

• Facebook (Hadoop)• Facebook (Hadoop)

• Yahoo! (Hadoop)

• Veritas (San Point Direct, VxFS)

• IBM Transarc (Andrew File System)



Hadoop, Why?

• Need to process huge datasets on large clusters 
of computers

• Very expensive to build reliability into each 
application.

• Nodes fail every day

– Failure is expected, rather than exceptional.

– The number of nodes in a cluster is not constant.

• Need common infrastructure

– Efficient, reliable, easy to use

– Open Source, Apache License



Hadoop History

• Dec 2004 – Google GFS paper published

• July 2005 – Nutch uses MapReduce

• Jan 2006 – Doug Cutting joins Yahoo!• Jan 2006 – Doug Cutting joins Yahoo!

• Feb 2006 – Becomes Lucene subproject

• Apr 2007 – Yahoo! on 1000-node cluster

• Jan 2008 – An Apache Top Level Project

• Feb 2008 – Yahoo! production search index



Who uses Hadoop?

• Amazon/A9

• Facebook

• Google

• IBM : Blue Cloud?• IBM : Blue Cloud?

• Joost

• Last.fm

• New York Times

• PowerSet

• Veoh

• Yahoo!



Commodity Hardware

Typically in 2 level architecture
– Nodes are commodity PCs

– 30-40 nodes/rack

– Uplink from rack is 3-4 gigabit

– Rack-internal is 1 gigabit



Goals of HDFS

• Very Large Distributed File System

– 10K nodes, 100 million files, 10 PB

• Assumes Commodity Hardware

– Files are replicated to handle hardware failure– Files are replicated to handle hardware failure

– Detect failures and recovers from them

• Optimized for Batch Processing

– Data locations exposed so that computations can 
move to where data resides

– Provides very high aggregate bandwidth



Secondary
NameNode

Client

HDFS Architecture

NameNode

Cluster Membership

DataNodes

Cluster Membership

NameNode : Maps a file to a file-id and list of MapNodes
DataNode  : Maps a block-id to a physical location on disk
SecondaryNameNode: Periodic merge of Transaction log



Distributed File System

• Single Namespace for entire cluster

• Data Coherency

– Write-once-read-many access model

– Client can only append to existing files – Client can only append to existing files 

• Files are broken up into blocks

– Typically 128 MB block size

– Each block replicated on multiple DataNodes

• Intelligent Client

– Client can find location of blocks

– Client accesses data directly from DataNode





Functions of a NameNode

• Manages File System Namespace

– Maps a file name to a set of blocks

– Maps a block to the DataNodes where it resides

• Cluster Configuration Management

• Replication Engine for Blocks



NameNode Metadata

• Meta-data in Memory

– The entire metadata is in main memory

– No demand paging of meta-data

• Types of Metadata• Types of Metadata

– List of files

– List of Blocks for each file

– List of DataNodes for each block

– File attributes, e.g creation time, replication factor

• A Transaction Log

– Records file creations, file deletions. etc



DataNode

• A Block Server

– Stores data in the local file system (e.g. ext3)

– Stores meta-data of a block (e.g. CRC)

– Serves data and meta-data to Clients– Serves data and meta-data to Clients

• Block Report

– Periodically sends a report of all existing blocks to 
the NameNode

• Facilitates Pipelining of Data

– Forwards data to other specified DataNodes



Block Placement

• Current Strategy

-- One replica on local node

-- Second replica on a remote rack

-- Third replica on same remote rack

-- Additional replicas are randomly placed

• Clients read from nearest replica

• Would like to make this policy pluggable



Heartbeats

• DataNodes send heartbeat to the NameNode

– Once every 3 seconds

• NameNode used heartbeats to detect DataNode 
failurefailure



Replication Engine

• NameNode detects DataNode failures

– Chooses new DataNodes for new replicas

– Balances disk usage

– Balances communication traffic to DataNodes



Data Correctness

• Use Checksums to validate data

– Use CRC32

• File Creation

– Client computes checksum per 512 byte

– DataNode stores the checksum

• File access

– Client retrieves the data and checksum from 

DataNode

– If Validation fails, Client tries other replicas



NameNode Failure

• A single point of failure

• Transaction Log stored in multiple directories

– A directory on the local file system

– A directory on a remote file system (NFS/CIFS)

• Need to develop a real HA solution



Data Pipelining

• Client retrieves a list of DataNodes on which to place 

replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the next • The first DataNode forwards the data to the next 

DataNode in the Pipeline

• When all replicas are written, the Client moves on to 

write the next block in file



Rebalancer

• Goal: % disk full on DataNodes should be similar

– Usually run when new DataNodes are added

– Cluster is online when Rebalancer is active

– Rebalancer is throttled to avoid network congestion– Rebalancer is throttled to avoid network congestion

– Command line tool



Secondary NameNode

• Copies FsImage and Transaction Log from 

NameNode to a temporary directory

• Merges FSImage and Transaction Log into a new 

FSImage in temporary directoryFSImage in temporary directory

• Uploads new FSImage to the NameNode

– Transaction Log on NameNode is purged



User Interface

• Command for HDFS User:

– hadoop dfs -mkdir /foodir

– hadoop dfs -cat /foodir/myfile.txt

– hadoop dfs -rm /foodir myfile.txt– hadoop dfs -rm /foodir myfile.txt

• Command for HDFS Administrator

– hadoop dfsadmin -report

– hadoop dfsadmin -decommission datanodename

• Web Interface

– http://host:port/dfshealth.jsp



Hadoop Map/Reduce

• The Map-Reduce programming model

– Framework for distributed processing of large data 
sets

– Pluggable user code runs in generic framework

• Common design pattern in data processing• Common design pattern in data processing

cat * | grep  | sort      | unique -c | cat > file

input | map | shuffle | reduce    | output

• Natural for:
– Log processing

– Web search indexing

– Ad-hoc queries



Hadoop Subprojects

• Pig (Initiated by Yahoo!)
– High-level language for data analysis

• HBase (initiated by Powerset)

– Table storage for semi-structured data– Table storage for semi-structured data

• Zookeeper (Initiated by Yahoo!)

– Coordinating distributed applications

• Hive (initiated by Facebook, coming soon)

– SQL-like Query language and Metastore

• Mahout

– Machine learning



Useful Links

• HDFS Design:

– http://hadoop.apache.org/core/docs/current/hdfs_design.html

• Hadoop API:

– http://hadoop.apache.org/core/docs/current/api/


