

Scalable Computing
with

Hadoop

Doug Cutting
cutting@apache.org

dcutting@yahoo-inc.com

5/4/06

mailto:cutting@apache.org

Seek versus Transfer

H I J K L M ...A B C D E F

G O U

● B-Tree
– requires seek per access
– unless to recent, cached page
– so can buffer & pre-sort accesses
– but, w/ fragmentation, must still seek per page

Seek versus Transfer

● update by merging
– merge sort takes log(updates), at transfer rate
– merging updates is linear in db size, at transfer rate

● if 10MB/s xfer, 10ms seek, 1% update of TB db
– 100b entries, 10kb pages, 10B entries, 1B pages
– seek per update requires 1000 days!
– seek per page requires 100 days!
– transfer entire db takes 1 day

Hadoop DFS

● modelled after Google's GFS
● single namenode

– maps name → <blockId>*
– maps blockId → <host:port>replication_level

● many datanodes, one per disk generally
– map blockId → <byte>*
– poll namenode for replication, deletion, etc. requests

● client code talks to both

Hadoop MapReduce

● Platform for reliable, scalable computing.
● All data is sequences of <key,value> pairs.
● Programmer specifies two primary methods:

– map(k, v) → <k', v'>*
– reduce(k', <v'>*) → <k', v'>*
– also partition(), compare(), & others

● All v' with same k' are reduced together, in order.
– bonus: built-in support for sort/merge!

MapReduce job processing

split 0 map()
split 1 map() part 0reduce()
split 2 map() part 1reduce()
split 3 map() part 2reduce()
split 4 map()

input outputmap tasks reduce tasks

Example: RegexMapper
public class RegexMapper implements Mapper {
 private Pattern pattern;
 private int group;
 public void configure(JobConf job) {
 pattern = Pattern.compile(job.get("mapred.mapper.regex"));
 group = job.getInt("mapred.mapper.regex.group", 0);
 }
 public void map(WritableComparable key, Writable value,
 OutputCollector output, Reporter reporter)
 throws IOException {
 String text = ((UTF8)value).toString();
 Matcher matcher = pattern.matcher(text);
 while (matcher.find()) {
 output.collect(new UTF8(matcher.group(group)),
 new LongWritable(1));
 }
 }
}

Example: LongSumReducer

public class LongSumReducer implements Reducer {
 public void configure(JobConf job) {}
 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output, Reporter reporter)
 throws IOException {
 long sum = 0;
 while (values.hasNext()) {
 sum += ((LongWritable)values.next()).get();
 }
 output.collect(key, new LongWritable(sum));
 }
}

Example: main()
 public static void main(String[] args) throws IOException {
 NutchConf defaults = NutchConf.get();
 JobConf job = new JobConf(defaults);
 job.setInputDir(new File(args[0]));
 job.setMapperClass(RegexMapper.class);
 job.set("mapred.mapper.regex", args[2]);
 job.set("mapred.mapper.regex.group", args[3]);
 job.setReducerClass(LongSumReducer.class);
 job.setOutputDir(args[1]);
 job.setOutputKeyClass(UTF8.class);
 job.setOutputValueClass(LongWritable.class);
 JobClient.runJob(job);
 }

Nutch Algorithms

● inject urls into a crawl db, to bootstrap it.
● loop:

– generate a set of urls to fetch from crawl db;
– fetch a set of urls into a segment;
– parse fetched content of a segment;
– update crawl db with data parsed from a segment.

● invert links parsed from segments
● index segment text & inlink anchor text

Nutch on MapReduce & NDFS

● Nutch's major algorithms converted in 2 weeks.
● Before:

– several were undistributed scalabilty bottlenecks
– distributable algorithms were complex to manage
– collections larger than 100M pages impractical

● After:
– all are scalable, distributed, easy to operate
– code is substantially smaller & simpler
– should permit multi-billion page collections

Data Structure: Crawl DB

● CrawlDb is a directory of files containing:
<URL, CrawlDatum>

● CrawlDatum:
<status, date, interval, failures, linkCount, ...>

● Status:
{db_unfetched, db_fetched, db_gone,
 linked,
 fetch_success, fetch_fail, fetch_gone}

Algorithm: Inject
● MapReduce1: Convert input to DB format

In: flat text file of urls
Map(line) → <url, CrawlDatum>; status=db_unfetched
Reduce() is identity;
Output: directory of temporary files

● MapReduce2: Merge into existing DB
Input: output of Step1 and existing DB files
Map() is identity.
Reduce: merge CrawlDatum's into single entry
Out: new version of DB

Algorithm: Generate
● MapReduce1: select urls due for fetch

In: Crawl DB files
Map() → if date≥now, invert to <CrawlDatum, url>
Partition by value hash (!) to randomize
Reduce:

compare() order by decreasing CrawlDatum.linkCount
output only top-N most-linked entries

● MapReduce2: prepare for fetch
Map() is invert; Partition() by host, Reduce() is identity.
Out: Set of <url,CrawlDatum> files to fetch in parallel

Algorithm: Fetch

● MapReduce: fetch a set of urls
In: <url,CrawlDatum>, partition by host, sort by hash
Map(url,CrawlDatum) → <url, FetcherOutput>

multi-threaded, async map implementation
calls existing Nutch protocol plugins

FetcherOutput: <CrawlDatum, Content>
Reduce is identity
Out: two files: <url,CrawlDatum>, <url,Content>

Algorithm: Parse

● MapReduce: parse content
In: <url, Content> files from Fetch
Map(url, Content) → <url, Parse>

calls existing Nutch parser plugins
Reduce is identity.
Parse: <ParseText, ParseData>
Out: split in three: <url,ParseText>, <url,ParseData>

and <url,CrawlDatum> for outlinks.

Algorithm: Update Crawl DB

● MapReduce: integrate fetch & parse out into db
In: <url,CrawlDatum> existing db plus fetch & parse

out
Map() is identity
Reduce() merges all entries into a single new entry

overwrite previous db status w/ new from fetch
sum count of links from parse w/ previous from db

Out: new crawl db

Algorithm: Invert Links

● MapReduce: compute inlinks for all urls
In: <url,ParseData>, containing page outlinks
Map(srcUrl, ParseData> → <destUrl, Inlinks>

collect a single-element Inlinks for each outlink
limit number of outlinks per page

Inlinks: <srcUrl, anchorText>*
Reduce() appends inlinks
Out: <url, Inlinks>, a complete link inversion

Algorithm: Index

● MapReduce: create Lucene indexes
In: multiple files, values wrapped in <Class, Object>

<url, ParseData> from parse, for title, metadata, etc.
<url, ParseText> from parse, for text
<url, Inlinks> from invert, for anchors
<url, CrawlDatum> from fetch, for fetch date

Map() is identity
Reduce() create a Lucene Document

call existing Nutch indexing plugins
Out: build Lucene index; copy to fs at end

Hadoop MapReduce Extensions

● Split output to multiple files
– saves subsequent i/o, since inputs are smaller

● Mix input value types
– saves MapReduce passes to convert values

● Async Map
– permits multi-threaded Fetcher

● Partition by Value
– facilitates selecting subsets w/ maximum key values

Thanks!

http://lucene.apache.org/hadoop/

