

ZooKeeper

A highly available, scalable, distributed,
configuration, consensus, group

membership, leader election, naming,
and coordination service

Protocol Guarantees

1)Sequential Consistency - Updates from a client will be
applied in the order that they were sent.

2) Atomicity - Updates either succeed or fail. No partial
results.

3) Single System Image - A client will see the same view
of the service regardless of the server that it connects
to.

4) Reliability - Once an update has been applied, it will
persist from that time forward until a client overwrites
the update.

5) Timeliness - The clients view of the system is
guaranteed to be up-to-date within a certain bound.
Either system changes will be seen by a client within
this bound, or the client will detect a service outage.

ZooKeeper Servers

ZooKeeper Service

ServerServer ServerServerServerServer

1)All servers store a copy of the data

2)A leader is elected at startup

3)Followers service clients, all updates go through leader

4)Update responses are sent when a majority of servers
have persisted the change

ZooKeeper Servers

ZooKeeper Service

ServerServer ServerServerServerServer

Client ClientClientClientClientClient ClientClient

Leader

All updates go through the leader where they
are ordered and stamped with a monotonically
increasing zxid.

ZooKeeper Leader Election

ZooKeeper Service

ServerServer 1 Server 5Server 4Server 3Server 2

1)UDP based

2)Server with the highest logged transaction gets
nominated

3)Election doesn't have to be absolutely correct, just very
likely correct

ZooKeeper Leader Election

ZooKeeper Service

ServerServer 1 Server 5Server 4Server 3Server 2

1)Each server initially nominate themselves

2)Servers poll each other to get their votes

 * This is the currently implemented protocol Flavio has a
better one in the works.

lastZxid: 21
vote: 5
voteZxid: 21

lastZxid: 21
vote: 4
voteZxid: 21

lastZxid: 23
vote: 3
voteZxid: 23

lastZxid: 22
vote: 2
voteZxid: 22

lastZxid: 22
vote: 1
voteZxid: 22

ZooKeeper Leader Election

ZooKeeper Service

ServerServer 1 Server 5Server 4Server 3Server 2

1)Each server initially nominate themselves

2)Servers poll each other to get their votes and vote for
the one with the highest zxid if there isn't a winner

lastZxid: 21
vote: 3
voteZxid: 23

lastZxid: 21
vote: 3
voteZxid: 23

lastZxid: 23
vote: 3
voteZxid: 23

lastZxid: 22
vote: 3
voteZxid: 23

lastZxid: 22
vote: 3
voteZxid: 23

Leading

1)Leader does not lead until a quorum of followers have
synced with it.

2)Zxid is a 64-bit number: 32-bit of epoch and 32-bit
counter.

3)The first proposal from a leader is a NEWLEADER txn
that has a zxid with the epoch bits one greater than the
last logged zxid and the counter set to zero.

4)Leader accepts requests after a quorum have acked the
NEWLEADER txn.

5)Everything processed in order.

ZooKeeper Servers

ServerServer ServerServer

Leader

1) Forward Request

2) Send Proposal

3) Ack Proposal

2) Send Proposal

3) Ack Proposal

4) Commit4) Commit

Create a
proposal and

stamp with zxid

Log txn, but
don't use until

committed

Update in memory
database and
make visible

Anatomy of Standalone
ZooKeeperServer

PrepRP SyncRP FinalRP

Data Tree

Session
Manager

Respond to
Client

Request from
Client

Anatomy of Standalone
ZooKeeperServer

PrepRP SyncRP FinalRP

Data Tree

Session
Manager

Respond to
Client

Request from
Client

1) Checks updates
against the future
2) Creates a
transaction 1) Logs txn

2) Releases
request when
synced to disk

1) Applies txn
2) Reply to client

Anatomy of Leader
ZooKeeperServer

PrepRP Commit Final

Data Tree

Session
Manager

Respond to
Client

Request from
Client Propose

SyncRP

Followers

Propose
ACK

ACK tracker

Commit

Anatomy of Leader
ZooKeeperServer

PrepRP Commit Final

Data Tree

Session
Manager

Respond to
Client

Request from
Client Propose

SyncRP

Followers

Propose
ACK

ACK tracker

Commit

1) Sends a
proposal to
followers

1) Holds request
until commit comes in

Anatomy of Follower
ZooKeeperServer

Follow Commit Final

Data Tree
Session
Manager

Respond to
Client

Request from
Client

SyncRP

Leader

Propose ACK

Commit

Anatomy of Follower
ZooKeeperServer

Follow Commit Final

Data Tree
Session
Manager

Respond to
Client

Request from
Client

SyncRP

Leader

Propose ACK

Commit1) Forwards
request to leader

DataTree

1)DataNodes contain node
data, stat, and child list

2)Hashtable maps path to
DataNode

3)Updates logged to stable
storage

4)Rough snapshots taken
periodically

Snapshots

Transaction LOG

t0t0t0 tn

Log.n

Snapshot.0

Log.0Log.0

Snapshot.n

Sn = Snapshot at zxid n, Ln = Log started at zxid n
Current DataTree = Sn + Ln
Because we do not lock the Data Tree to snapshot, we get some txns in the
snapshot that arrived after snapshot started. We have S'n = Sn + L'n,
where L'n subset of Ln.
However S'n + Ln = Sn + L'n + Ln
Due to idempotent nature of the txns, L'n+Ln = Ln
Thus, S'n+Ln = Sn+Ln

Handling Server Switching
1) A client must see the same view

of the system no matter which
server it connects to.

2) Followers are always consistent
with leaders they may be behind
in their updates.

3) Clients of a fast follower may
have a more recent view than a
slow follower.

4) Followers only serve clients if
their view of the system is equal
to or more up-to-date than the
client's.

5) Client1 can connect to Server2,
but Server2 will refuse Client2's
connection until Server2 sees
Zxid 16

ZooKeeper Service

ServerServer Server3Server2

Client1 Client3Client2

Leader

Failure

Zxid:
15

Zxid:
19

Zxid:
16

Zxid:
16

Zxid:
15

Zxid:
18

Protocol Guarantees

1)Sequential Consistency - Updates from a client will be
applied in the order that they were sent.

2) Atomicity - Updates either succeed or fail. No partial
results.

3) Single System Image - A client will see the same view
of the service regardless of the server that it connects
to.

4) Reliability - Once an update has been applied, it will
persist from that time forward until a client overwrites
the update.

5) Timeliness - The clients view of the system is
guaranteed to be up-to-date within a certain bound.
Either system changes will be seen by a client within
this bound, or the client will detect a service outage.

Status

● Code in vault under yahoo/yresearch/projects/zookeeper
● Quorum and Standalone servers working
● Java and C clients available

Todo
● Convert server to use NIO
● More efficient follower syncing
● Check ACLs
● Perl, Python, and Ruby bindings
● Lots more testing!

