ZooKeeper

A highly available, scalable, distributed,
configuration, consensus, group
membership, leader election, naming,
and coordination service

Observations

1)Distributed systems always need some form of
coordination

2)Programmers cannot use locks correctly
- distributed deadlocks are the worst!

3)Group messaging can be hard to use in some
applications

What “works”

1)Programmers use shared file systems
- Programmers are comfortable with file API

- file servers are generic infrastructure
components

- It mostly works
2)File APl and servers lack some needed semantics

- Reasonable handling of concurrent writes
- Change notifications

Making things really work

1)Conditional updates (to deal with concurrent clients)
2)0rdered updates and strong persistence guarantees
3)Watches for data changes

4)Ephemeral nodes

5)Generated file names

Data Model

1)Hierarchal namespace
(like a file system)

2)Each znode has data
and children

3)data is read and written
In its entirety

services

_

YaView

apps

USErs

Servers

stupidname

morestupidity

locks

L read-1

ZooKeeper API

String create(path, data, acl, flags)

void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion)
(data, Stat) getData(path, watch)

Stat exists(path, watch)

String[] getChildren(path, watch)

void sync(path)

Stat setACL(path, acl, expectedVersion)

(acl, Stat) getACL(path)

Create Flags

1)Ephemeral: the znode
will be deleted when
the session that
created it times out or
it is explicitly deleted

2)Sequence: the the path
name will have a
monotonically
Increasing counter
relative to the parent
appended

services

_

Ephemerals
created by
Session X

YaView

apps

USErs

servers

ATstu pidname
morestupidity

/
cks

o

\L s-1

/

Sequence
appended
on create

ZooKeeper Guarantees

1)Clients will never detect old data.

2)Clients will get notified of a change to data they are
watching within a bounded period of time.

3)All requests from a client will be processed in order.

4)All results received by a client will be consistent with
results received by all other clients.

... is used to simplify
examples, real usage

“zi=" Leader Election

1)getData(“.../servers/leader”, true)

2)if successful follow the leader
described in the data and exit

3)create(“.../servers/leader”,

Servers

hostname, EPHEMERAL)
4)if successful lead and exit
5)goto step 1

stupidname

morestupidity

leader

Locks

1)id = create(“.../locks/x-",
SEQUENCE|EPHEMERAL)

2)getChildren(“.../locks”/,
false)

3)if id is the 1** child, exit

4)exists(name of last child
before id, true)

5)if does not exist, goto 2)
6)wait for event

locks

x-11

Xx-19

x-20

Shared Locks

1)id = create(“.../locks/s-",
SEQUENCE|EPHEMERAL)

2)getChildren(“.../locks”/,
false)

3)if no children that start
with x- before id, exit

4)exists(name of the last x-
before id, true)

5)if does not exist, goto 2)
6)wait for event

locks

s-11

X-19

s-20

s-21

X-22

HOD

1)A client submits a request
to start jobtracker and a
set of tasktrackers to
torque

2)The ip address and the
ports that the jobtracker
will bind to is not known
apriori

3)The tasktrackers need to
find the jobtracker

4)The client needs to find
the jobtracker

Client

HOD with ZooKeeper

geate(“/hod/jt-",EPHEMERAL|SEQUENC
/hod/jt-1

HOD with ZooKeeper

HOD with ZooKeeper
//7

Watcher w = new Watcher() { 7
public void process(WatcherEvent event) {

if (event.getPath()!=null && path!=null && path.equals(event.getPath())) {

synchronized(this) { notifyAll(); }
}

I

ZooKeeper zk = new ZooKeeper(zooHostsPorts, 15000, w);

path = zk.create("/hod/job-", null, null, CreateFlags.EPHEMERAL|CreateFlags.SEQUENCE);

Stat s = new Stat();

byte b[] = zk.getData(path, true, s); &

while(b.length == 0) {
synchronized(w) {

w.wait(); ip and ports
b = zk.getData(path, true, s); 1 WatCh
}
}
)Keeper

/
——— gef("thod/jt- M " hod

data — &L»jt_l

HOD with ZooKeeper

Watcher w = new Watcher() {
public void process(WatcherEvent event) {
synchronized(this) { notifyAll(); }
if (zk.exists(id, true) == null) {
System.exit(0);
}

¥
zk = new ZooKeeper(zooHostsPorts, 15000, w);

int ports[] = getRandomPorts(2);

Stat stat = new Stat();

String hostPort = null;

synchronized(w) {

while (hostPort == null) {

byte bytes[] = zk.getData(id, true, stat);
Properties props = new Properties();
props.load(new ByteArraylnputStream(bytes));
hostPort = props.getProperty("mapred.job.tracker");
if (hostPort == null) w.wait();

Client conf.set("mapred.job.tracker", hostPort);
conf.set("tasktracker.http.port”, ports[0]);
conf.set("mapred.task.tracker.report.port”, ports[1]);
new TaskTracker(conf).run();

aata —Lalit-1

HOD with ZooKeeper

Watcher w = new Watcher() {
public void process(WatcherEvent event) {
synchronized(this) { notifyAll(); }
if (zk.exists(id, true) == null) {
System.exit(0);
}

b

zk = new ZooKeeper(zooHostsPorts, 15000, w);

String host = Inet4Address.getLocalHost().getCanonicalHostName();
int ports[] = getRandomPorts(2);

String hostPort = host+":"+ports[0]; .
String props = "mapred.job.tracker="+hostPort+"\n"; add existen
zk.setData(id, props.getBytes(), -1);
conf.setint("mapred.job.tracker.info.port", ports[1]);
conf.set("mapred.job.tracker", hostPort);
JobTracker.startTracker(conf);

ip and ports
watch

ZooKeeper

jt- %\ Lhod

data %jt-l

ZooKeeper Servers

Server Server Server Server Server

1)All servers store a copy of the data
2)A leader is elected at startup

3)Followers service clients, all updates go through leader
)

4)Update responses are sent when a majority of servers
have persisted the change

ZooKeeper Servers

Performance at Extremes

Servers 1% Writes 100% Writes

13 265115 4592
9 195178 5550
/ 147810 6371
5 75308 3048
3 49827 10519

Requests per second

Performance

910 clients
50000

3 servers
5 BErVers
7 servers
9 servers
13 senrvers

40000

30000

20000

10000

0 10 20 30 40 50 60 70 80 90 100
Percentage of request that are writes

Cool Related Projects

* Client libraries for higher level primitives
(Avery Ching and Jacob Levy)

« ZoOKeeper FUSE (Swee Lim)

Status

Code on zookeeper.sf.net

Quorum and Standalone servers working
Java and C clients available

Working on cross colo ZooKeeper
Starting design of distributed ZooKeeper

