

ZooKeeper

A highly available, scalable, distributed,
configuration, consensus, group

membership, leader election, naming,
and coordination service

Observations

1)Distributed systems always need some form of
coordination

2)Programmers cannot use locks correctly

– distributed deadlocks are the worst!
3)Group messaging can be hard to use in some

applications

What “works”

1)Programmers use shared file systems

– Programmers are comfortable with file API
– file servers are generic infrastructure

components
– It mostly works

2)File API and servers lack some needed semantics

– Reasonable handling of concurrent writes
– Change notifications

Making things really work

1)Conditional updates (to deal with concurrent clients)

2)Ordered updates and strong persistence guarantees

3)Watches for data changes

4)Ephemeral nodes

5)Generated file names

Data Model

1)Hierarchal namespace
(like a file system)

2)Each znode has data
and children

3)data is read and written
in its entirety

/

services

users

apps

locks

servers

YaView

read-1

morestupidity

stupidname

ZooKeeper API

String create(path, data, acl, flags)

void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion)

(data, Stat) getData(path, watch)

Stat exists(path, watch)

String[] getChildren(path, watch)

void sync(path)

Stat setACL(path, acl, expectedVersion)

(acl, Stat) getACL(path)

Create Flags

1)Ephemeral: the znode
will be deleted when
the session that
created it times out or
it is explicitly deleted

2)Sequence: the the path
name will have a
monotonically
increasing counter
relative to the parent
appended

/

services

users

apps

locks

servers

YaView

s-1

morestupidity

stupidname

Ephemerals
created by
Session X

Sequence
appended
on create

ZooKeeper Guarantees

1)Clients will never detect old data.

2)Clients will get notified of a change to data they are
watching within a bounded period of time.

3)All requests from a client will be processed in order.

4)All results received by a client will be consistent with
results received by all other clients.

Leader Election
1)getData(“.../servers/leader”, true)

2)if successful follow the leader
described in the data and exit

3)create(“.../servers/leader”,
hostname, EPHEMERAL)

4)if successful lead and exit

5)goto step 1

servers

morestupidity

stupidname

If a watch is triggered for
“.../servers/leader”, followers will
restart the leader election process

leader

Contains:
stupidname

... is used to simplify
examples, real usage

requires full path
names

Locks

1)id = create(“.../locks/x-”,
SEQUENCE|EPHEMERAL)

2)getChildren(“.../locks”/,
false)

3)if id is the 1st child, exit

4)exists(name of last child
before id, true)

5)if does not exist, goto 2)

6)wait for event

7)goto 2)

locks

x-19

x-11

x-20

Each znode watches one other.
No herd effect.

Shared Locks

1)id = create(“.../locks/s-”,
SEQUENCE|EPHEMERAL)

2)getChildren(“.../locks”/,
false)

3)if no children that start
with x- before id, exit

4)exists(name of the last x-
before id, true)

5)if does not exist, goto 2)

6)wait for event

7)goto 2)

locks

x-19

s-11

x-20

Each znode watches one other.
No herd effect.

x-19x-19

s-21

x-22

s-20

HOD

1)A client submits a request
to start jobtracker and a
set of tasktrackers to
torque

2)The ip address and the
ports that the jobtracker
will bind to is not known
apriori

3)The tasktrackers need to
find the jobtracker

4)The client needs to find
the jobtracker

Torque

Client

JT TT

TT
TT

HOD with ZooKeeper

Torque

Client

JT TT

TT
TT

ZooKeeper

/
hod

create(“/hod/jt-”,EPHEMERAL|SEQUENCE)
/hod/jt-1

HOD with ZooKeeper

Torque

Client

JT
TT

TT

TT

ZooKeeper

/
get(“/hod/jt-1”, true)

data jt-1
hod

setData with ip and ports
add existence watch

When the client spawns the TT and JT tasks
in torque, it passes the path of the newly
create znode (/hod/jt-1) as a startup parameter.

The client and TT watch the znode for data
populated by JT. JT and TT watch the existence
of the znode and exit if it goes away.

HOD with ZooKeeper

Torque

Client

JT
TT

TT

TT

ZooKeeper

/
get(“/hod/jt-1”, true)

data jt-1
hod

setData with ip and ports
add existence watch

Watcher w = new Watcher() {
public void process(WatcherEvent event) {

 if (event.getPath()!=null && path!=null && path.equals(event.getPath())) {
 synchronized(this) { notifyAll(); }
 }
 }
};

ZooKeeper zk = new ZooKeeper(zooHostsPorts, 15000, w);

path = zk.create("/hod/job-", null, null, CreateFlags.EPHEMERAL|CreateFlags.SEQUENCE);
Stat s = new Stat();

byte b[] = zk.getData(path, true, s);
while(b.length == 0) {

synchronized(w) {
 w.wait();
 b = zk.getData(path, true, s);
 }
}

HOD with ZooKeeper

Torque

Client

JT
TT

TT

TT

ZooKeeper

/
get(“/hod/jt-1”, true)

data jt-1
hod

setData with ip and ports
add existence watch

Watcher w = new Watcher() {
public void process(WatcherEvent event) {

synchronized(this) { notifyAll(); }
if (zk.exists(id, true) == null) {

System.exit(0);
 }
 }
};

zk = new ZooKeeper(zooHostsPorts, 15000, w);

int ports[] = getRandomPorts(2);
Stat stat = new Stat();
String hostPort = null;
synchronized(w) {

while (hostPort == null) {
 byte bytes[] = zk.getData(id, true, stat);
 Properties props = new Properties();
 props.load(new ByteArrayInputStream(bytes));
 hostPort = props.getProperty("mapred.job.tracker");
 if (hostPort == null) w.wait();
 }
}

 conf.set("mapred.job.tracker", hostPort);
 conf.set("tasktracker.http.port", ports[0]);
 conf.set("mapred.task.tracker.report.port", ports[1]);
 new TaskTracker(conf).run();

HOD with ZooKeeper

Torque

Client

JT
TT

TT

TT

ZooKeeper

/
get(“/hod/jt-1”, true)

data jt-1
hod

setData with ip and ports
add existence watch

Watcher w = new Watcher() {
public void process(WatcherEvent event) {

synchronized(this) { notifyAll(); }
if (zk.exists(id, true) == null) {

System.exit(0);
 }
 }
};

zk = new ZooKeeper(zooHostsPorts, 15000, w);

String host = Inet4Address.getLocalHost().getCanonicalHostName();
int ports[] = getRandomPorts(2);
String hostPort = host+":"+ports[0];
String props = "mapred.job.tracker="+hostPort+"\n";
zk.setData(id, props.getBytes(), -1);
conf.setInt("mapred.job.tracker.info.port", ports[1]);
conf.set("mapred.job.tracker", hostPort);
JobTracker.startTracker(conf);

ZooKeeper Servers

ZooKeeper Service

ServerServer ServerServerServerServer

1)All servers store a copy of the data

2)A leader is elected at startup

3)Followers service clients, all updates go through leader

4)Update responses are sent when a majority of servers
have persisted the change

ZooKeeper Servers

ZooKeeper Service

ServerServer ServerServerServerServer

Client ClientClientClientClientClient ClientClient

Leader

Performance at Extremes

Servers 1% Writes 100% Writes
13 265115 4592
9 195178 5550
7 147810 6371
5 75308 8048
3 49827 10519

Performance

Cool Related Projects

● Client libraries for higher level primitives
(Avery Ching and Jacob Levy)

● ZooKeeper FUSE (Swee Lim)

Status

● Code on zookeeper.sf.net
● Quorum and Standalone servers working
● Java and C clients available
● Working on cross colo ZooKeeper
● Starting design of distributed ZooKeeper

