
Architectural OverviewArchitectural Overview

SILOS Gregory Nutt

An OS is a STATE MACHINE, not a program

● Better thought of as a library (but may include
Kernel threads to monitor and respond to events).

● Manages tasks, threads, interrupts, resources, etc.
● Library-like functions respond to events from threads

and hardware and requests from threads.
● Respond with state changes and perhaps thread

state transitions (scheduler).
● MORE than a scheduler: Complete operating

environment.

An OS is a STATE MACHINE, not a program

● Better thought of as a library (but may include
Kernel threads to monitor and respond to events).

● Manages tasks, threads, interrupts, resources, etc.
● Library-like functions respond to events from threads

and hardware and requests from threads.
● Respond with state changes and perhaps thread

state transitions (scheduler).
● MORE than a scheduler: Complete operating

environment.

Architectural Overview –State MachineArchitectural Overview –State Machine

ThreadThread

Normal sequential code execution
Separate stack
Normal sequential code execution
Separate stack

TaskTask

Main thread of a task group
Members of the group share resources
Main thread of a task group
Members of the group share resources

Architectural Overview – Scheduler
One of MANY components of an Operating System

Architectural Overview – Scheduler
One of MANY components of an Operating System

Ready-to-run

Running

Blocked*

Fully pre-emptible
Context switch:
Think setjmp/longjmp on steriods

Fully pre-emptible
Context switch:
Think setjmp/longjmp on steriodsPending

(NuttX)

Task Start

Highest Priority
Ready-to-run task is
Running

Highest Priority
Ready-to-run task is
Running

*Wait for signal,
semaphore, message
queue, page fill,
stopped, etc.

*Wait for signal,
semaphore, message
queue, page fill,
stopped, etc.

Task Control Block (TCB)Task Control Block (TCB)

States represented by lists of TCBsStates represented by lists of TCBs

Task / ThreadTask / Thread

Sequential code execution
Separate stack
Sequential code execution
Separate stack

Scheduler
Locked

Hardware

OS / Application Interface

● Strict, standard interface between applications
and the OS.

● No C-callable HAL (Hardware Abstraction Layer)
● Ad hoc calls into OS strictly forbidden

OS / Application Interface

● Strict, standard interface between applications
and the OS.

● No C-callable HAL (Hardware Abstraction Layer)
● Ad hoc calls into OS strictly forbidden

Architectural Overview – POSIX InterfaceArchitectural Overview – POSIX Interface

Strict POSIX Interface

Applications

Architectural Overview – SilosArchitectural Overview – Silos

Strict POSIX Interface

Hardware

Applications

audio/ binfmt/ crypto/ drivers/ wireless/...

Organized into “Silos”
● “Vertical” architectural organization
● Correspond to most directories under nuttx/
audio/, binfmt/, crypto/, drivers/, fs/,
graphics/, video/, wireless/

Organized into “Silos”
● “Vertical” architectural organization
● Correspond to most directories under nuttx/
audio/, binfmt/, crypto/, drivers/, fs/,
graphics/, video/, wireless/

Hardware

audio/ binfmt/ crypto/ drivers/ wireless/...

Architectural Overview – Silos (Continued)Architectural Overview – Silos (Continued)

Strict POSIX Interface

Applications

audio/

Silo Characteristics:
● Interfaces between

Silos strictly controlled.
● Only interfaces via

formalized, documented
interfaces permitted.

Silo Characteristics:
● Interfaces between

Silos strictly controlled.
● Only interfaces via

formalized, documented
interfaces permitted.

Hardware

Libraries:
● “Horizontal” broad, “layered” software components.
● Also have well-defined interfaces, less strict

User-Facing libraries:
● libs/ directory contains share-able logic that may be

used both within the OS or by Applications.
● libc, libm (math), libnx (graphics), etc.

Libraries:
● “Horizontal” broad, “layered” software components.
● Also have well-defined interfaces, less strict

User-Facing libraries:
● libs/ directory contains share-able logic that may be

used both within the OS or by Applications.
● libc, libm (math), libnx (graphics), etc.

binfmt/ crypto/ drivers/ wireless/...

Architectural Overview – Common LibrariesArchitectural Overview – Common Libraries

Strict POSIX Interface

Applications

audio/

Common Libraries (libs/)

Common Libraries (libs/)

Hardware

binfmt/ crypto/ drivers/ wireless/...

Architectural Overview – User Facing LibrariesArchitectural Overview – User Facing Libraries

Strict POSIX Interface

Applications

audio/

Common Libraries (libs/)

OS (sched/), memory Manager (mm/), Common Libraries (libs/)

User-Facing OS libraries:
● sched/ provides user OS services
● syscall/ provides system interface in PROTECTED

and KERNEL build modes
● mm/ memory management
● fs/vfs/ provides POSIX name space management
● net/sockets/ provides BSD socket interface

User-Facing OS libraries:
● sched/ provides user OS services
● syscall/ provides system interface in PROTECTED

and KERNEL build modes
● mm/ memory management
● fs/vfs/ provides POSIX name space management
● net/sockets/ provides BSD socket interface

VFS (fs/vfs/), BSD Sockets (net/sockets/), System Calls (syscall/)

Hardware

binfmt/ crypto/ drivers/ wireless/...

Architectural Overview – OS Internal LibrariesArchitectural Overview – OS Internal Libraries

Strict POSIX Interface

Applications

audio/

Common Libraries (libs/)

OS (sched/), memory Manager (mm/), Common Libraries (libs/)

OS Internal Libraries:
● “Horizontal” broad, “layered” OS components.
● Provide common services to “Silos”
● Also have well-defined interfaces, less strict
● arch/ provides architecture-specific support
● boards/ provides board-specific support

OS Internal Libraries:
● “Horizontal” broad, “layered” OS components.
● Provide common services to “Silos”
● Also have well-defined interfaces, less strict
● arch/ provides architecture-specific support
● boards/ provides board-specific support

VFS (fs/vfs/), BSD Sockets (net/sockets/), System Calls (syscall/)

Architecture-specific support (arch/), Board-specific support (boards/)

Hardware

binfmt/ crypto/ drivers/ wireless/...

Architectural Overview – LayeringArchitectural Overview – Layering

Strict POSIX Interface

Applications

audio/

Common Libraries (libs/)

OS (sched/), memory Manager (mm/), Common Libraries (libs/)

Strict Layering:
● Lowest layers depend on nothing else
● Higher layers depend only on lower layers
● Only downward control. Higher level layers

may call into lower levels. Lower levels
may not call directly into higher levels.

Strict Layering:
● Lowest layers depend on nothing else
● Higher layers depend only on lower layers
● Only downward control. Higher level layers

may call into lower levels. Lower levels
may not call directly into higher levels.

VFS (fs/vfs/), BSD Sockets (net/sockets/), System Calls (syscall/)

Architecture-specific support (arch/), Board-specific support (boards/)

Layer N

Layer N-1

Hardware

binfmt/ crypto/ drivers/ wireless/...

Architectural Overview – LayeringArchitectural Overview – Layering

Strict POSIX Interface

Applications

audio/

Common Libraries (libs/)

OS (sched/), memory Manager (mm/), Common Libraries (libs/)

VFS (fs/vfs/), BSD Sockets (net/sockets/), System Calls (syscall/)

Architecture-specific support (arch/), Board-specific support (boards/)

Layering within Silos:
● Internal architecture of each Silo is also layered

Layering within Silos:
● Internal architecture of each Silo is also layered

Architectural Overview – Platform DirectoriesArchitectural Overview – Platform Directories

nuttx/

arch/ boards/

arch/<arch>

arch/<arch>/include/<chip>
arch/<arch>/src/<chip>

arch/<arch>

arch/<arch>/<chip>

arch/<arch>/<chip>/<board>
Platform:
● Fully described by CPU architecture <arch>,
● By MCU chip architecture <chip>, and
● Board design <board>

Platform:
● Fully described by CPU architecture <arch>,
● By MCU chip architecture <chip>, and
● Board design <board>

Architectural Overview – Architectures,
Boards, and Configuration

Architectural Overview – Architectures,
Boards, and Configuration

Platform Directories:
● Requires specification of CPU architecture, MCU architecture, and board

design
● CPU architecture provided by sub-directories of arch/ and boards/:
arm/, avr/, hc/, mips/, misoc/, or1k/, renesas/, risc-v/, sim/,
x86/, xtensa/, z16/, z80/

● MCU architecture provided by sub-directories of arch/<arch>/src,
arch/<arch>/include, and boards/<arch>/

● Board design provided by sub-directories of boards/<arch>/<chip>.

Platform Directories:
● Requires specification of CPU architecture, MCU architecture, and board

design
● CPU architecture provided by sub-directories of arch/ and boards/:
arm/, avr/, hc/, mips/, misoc/, or1k/, renesas/, risc-v/, sim/,
x86/, xtensa/, z16/, z80/

● MCU architecture provided by sub-directories of arch/<arch>/src,
arch/<arch>/include, and boards/<arch>/

● Board design provided by sub-directories of boards/<arch>/<chip>.

Device Drivers Accessible to Applications via Name Space

• Standard character and block drivers plus MTD drivers
• Special files in VFS.
• Block drivers support file systems.
• Character drivers accessible via standard, POSIX interfaces

like a file (open, close, read, write, etc.)
• MTD drivers support FLASH file systems

• Loop device – Convert file or character device to a block
device

• BCH device – Convert a block device to a character
device

Device Drivers Accessible to Applications via Name Space

• Standard character and block drivers plus MTD drivers
• Special files in VFS.
• Block drivers support file systems.
• Character drivers accessible via standard, POSIX interfaces

like a file (open, close, read, write, etc.)
• MTD drivers support FLASH file systems

• Loop device – Convert file or character device to a block
device

• BCH device – Convert a block device to a character
device

Architectural Overview – Device DriversArchitectural Overview – Device Drivers

Upper Half DriverUpper Half Driver

Standard Character or block driver
interface

Standard Character or block driver
interface

Common upper half driver.
Hardware Independent!

Common upper half driver.
Hardware Independent!

Common interfaces with multiple
instances of lower half driver

Common interfaces with multiple
instances of lower half driver

Upper Half DriverUpper Half Driver
Multiple Lower Half

Drivers
Multiple Lower Half

Drivers
Multiple lower half drivers
Bound to upper half via common interface
Provide hardware specific interface

Multiple lower half drivers
Bound to upper half via common interface
Provide hardware specific interface

Architectural Overview – Module Device
Driver Design

Architectural Overview – Module Device
Driver Design

LayeredHardwareHardware

Architectural Overview – FLAT BuildArchitectural Overview – FLAT Build

OS + Board LogicOS + Board Logic
Kernel SpaceKernel Space

Supervisor PrivilegesSupervisor Privileges

OS + Board LogicOS + Board Logic
Kernel SpaceKernel Space

Supervisor PrivilegesSupervisor Privileges

ApplicationsApplications
Supervisor PrivilegesSupervisor Privileges

ApplicationsApplications
Supervisor PrivilegesSupervisor PrivilegesApplications, OS,

and board logic
exist in a common
FLAT address
Environment

FLAT – All addresses
have same properties

Applications, OS,
and board logic
exist in a common
FLAT address
Environment

FLAT – All addresses
have same properties

Shared, common, heapShared, common, heap

Architectural Overview – PROTECTED BuildArchitectural Overview – PROTECTED Build

OS + Privileged Board Logic
Kernel Space

Supervisor Privileges

OS + Privileged Board Logic
Kernel Space

Supervisor Privileges

Applications
User Space

User Privileges Only

Applications
User Space

User Privileges OnlyPrivileges mapped
onto an otherwise
flat address space
by MPU – Memory
Protection Unit

ARM7, ARMv7-M,
ARMv7-R

Privileges mapped
onto an otherwise
flat address space
by MPU – Memory
Protection Unit

ARM7, ARMv7-M,
ARMv7-R

Separate User/Kernel heapsSeparate User/Kernel heaps

Architectural Overview – KERNEL BuildArchitectural Overview – KERNEL Build

OS + Privileged Board LogicOS + Privileged Board Logic
Kernel SpaceKernel Space

Supervisor PrivilegesSupervisor Privileges

OS + Privileged Board LogicOS + Privileged Board Logic
Kernel SpaceKernel Space

Supervisor PrivilegesSupervisor Privileges

ProcessProcess
11

ProcessProcess
11

Kernel/User Address
Environments Mapped
With MMU -
Memory Management
Unit

MIPS, ARM9, ARMv7-A

Kernel/User Address
Environments Mapped
With MMU -
Memory Management
Unit

MIPS, ARM9, ARMv7-A

Multiple User Address EnvironmentsMultiple User Address Environments

ProcessProcess
22

ProcessProcess
22

ProcessProcess
33

ProcessProcess
33

ProcessProcess
11

ProcessProcess
11

...

Kernel heap, per process virtual, on-demand heaps.Kernel heap, per process virtual, on-demand heaps.

Architectural Overview – Call GatesArchitectural Overview – Call Gates

Applications Application

Syscall Proxies

Software interrupt Handler

User Space

Syscall Stub

OS Interface

1. Proxy maps OS
Interface call into
Software interrupt

1. Proxy maps OS
Interface call into
Software interrupt

2. Handler returns to stub
In Supervisor mode.
3. Exectues OS interface
Function in supervisor
mode

2. Handler returns to stub
In Supervisor mode.
3. Exectues OS interface
Function in supervisor
mode

4. Sycall return
Re-establishes User
mode

4. Sycall return
Re-establishes User
mode

Kernel Space

Architectural Overview – More Call GatesArchitectural Overview – More Call Gates

● Implemented as System Calls. Via Software Interrupts
● Requires careful management of OS interfaces: All must be

represented with system calls.
● Stubs and proxies for system calls automatically generated

via CSV (comma separated value) file

● Implemented as System Calls. Via Software Interrupts
● Requires careful management of OS interfaces: All must be

represented with system calls.
● Stubs and proxies for system calls automatically generated

via CSV (comma separated value) file

Architectural Overview – Future TrustZone
Build?

Architectural Overview – Future TrustZone
Build?

?
Cortex-A

Cortex-R

Cortex-A

Cortex-M33

ARMv7-A ARMv7-R

ARMv8-M ARMv8-A?

Current Support: Cortex-A in multiple-OS, multi-core environments.Current Support: Cortex-A in multiple-OS, multi-core environments.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

