

NuttX RTOS

Gregory Nutt

Wifi/
Bluetooth

NuttX Wireless SubsystemNuttX Wireless Subsystem

Objective: Support ALL radios via Network Layer using
standard, BSD socket interfaces (like Linux).

Simple, Low Cost Radios
● Use a simple character interface, not part the wireless subsystem
● cc1101,NRF2410L, LoRA (SX127X)

IEEE 802.15.4
● Extensive development; widespread usage; world class support
● Independent MAC and radio layers
● Supported by IPv6 / 6LoWPAN, AF_IEEE802 raw sockets, and

character driver backdoor
● MRF24J40, XBee

Other Packet Radios
● Higher end, non-standard radios capable of networking
● Supported by IPv6 / 6LoWPAN, AF_PKTRADIO raw sockets
● STMicro Spirit radios

Objective: Support ALL radios via Network Layer using
standard, BSD socket interfaces (like Linux).

Simple, Low Cost Radios
● Use a simple character interface, not part the wireless subsystem
● cc1101,NRF2410L, LoRA (SX127X)

IEEE 802.15.4
● Extensive development; widespread usage; world class support
● Independent MAC and radio layers
● Supported by IPv6 / 6LoWPAN, AF_IEEE802 raw sockets, and

character driver backdoor
● MRF24J40, XBee

Other Packet Radios
● Higher end, non-standard radios capable of networking
● Supported by IPv6 / 6LoWPAN, AF_PKTRADIO raw sockets
● STMicro Spirit radios

NuttX Wireless Subsystem (Continued)NuttX Wireless Subsystem (Continued)

WiFi (IEEE 802.11)
● Not a highly developed sub-system
● Controlled via Linux compatible IOCTLs
● Simple to port Linux WiFi utilities such as WAPI
● Standard BSD INET socket interface, including raw sockets.
● IEEE 802.11 stack currently part of radio driver
● BCM43362, BCM43428 with SDIO interface, FullMAC
● No SoftMAC (Partial port of NetBSD soft MAC available)

Bluetooth
● BLE 4.0 Stack leveraged from Intel BSD Zephyr release
● Current (Apache) Zephyr is Bluetooth/BLE 5.0
● AF_BLUETOOTH raw socket interface.
● Could support 6LoWPAN on LDAP
● HCI UARTs: TI CC2564, Laird BT860 (Cypress CYW20704) , BCM4348A1,

BCM4343xm generic HCI-UART

WiFi Modules
● With TCP/UDP stack on-module
● Support via USRSOCK, user space sockets
● GS2200M

WiFi (IEEE 802.11)
● Not a highly developed sub-system
● Controlled via Linux compatible IOCTLs
● Simple to port Linux WiFi utilities such as WAPI
● Standard BSD INET socket interface, including raw sockets.
● IEEE 802.11 stack currently part of radio driver
● BCM43362, BCM43428 with SDIO interface, FullMAC
● No SoftMAC (Partial port of NetBSD soft MAC available)

Bluetooth
● BLE 4.0 Stack leveraged from Intel BSD Zephyr release
● Current (Apache) Zephyr is Bluetooth/BLE 5.0
● AF_BLUETOOTH raw socket interface.
● Could support 6LoWPAN on LDAP
● HCI UARTs: TI CC2564, Laird BT860 (Cypress CYW20704) , BCM4348A1,

BCM4343xm generic HCI-UART

WiFi Modules
● With TCP/UDP stack on-module
● Support via USRSOCK, user space sockets
● GS2200M

Wireless Networking Directory StructureWireless Networking Directory Structure

bluetooth/
(raw socket)

net/

tcp/ udp/ *

sixlowpan/
(6LoWPAN)

netdev/
(net ioctls)

inet/
(inet sockets)

No ieee802.11/

wireless/

bluetooth/
(MAC,

network driver)

ieee802.15.4/
(MAC,

Network driver)

drivers/wireless/

ieee802.15.4/
(radio drivers)

spirit/
(pktradio MAC)

nuttx/

*Not shown: ARP, ICMPv6, other protocols

ieee802.11/
(network driver,
radio drivers,

ieee802.11 stack)

pktradio/
(network driver)

bluetooth/
(HCI UART drivers)

Simplest Data Flow Case: Wired EthernetSimplest Data Flow Case: Wired Ethernet

net/

netdev/
(network ioctls)

Architecture-
Specific Logic*

Ethernet
Driver

VFS
ioctl()

tcp/ udp/ etc.
(protocol stacks)

inet/
(inet sockets)

BSD
Socket

*or drivers/net

● No explicit MAC Layer
● Linux/BSD compatible

Network IOCTL
commands

● No explicit MAC Layer
● Linux/BSD compatible

Network IOCTL
commands

Network driver interface provides common
Inteface between stacks and Layer2

Network driver interface provides common
Inteface between stacks and Layer2

IEEE802.15.4/WiFI/Bluetooth Network IOCTLsIEEE802.15.4/WiFI/Bluetooth Network IOCTLs

net/

netdev/
(network ioctls)

wireless/

bluetooth/
(MAC)

bluetooth/
(network driver)

ieee802.15.4/
(MAC)

ieee802.15.4/
(network driver)

ieee802.11/
(network driver,

FullMAC)

drivers/wireless/

ieee802.15.4/
(radio drivers)

bluetooth/
(HCI UART drivers)

VFS
ioctl()

Semi-standard,
Linux/BSD compatible
Wireless IOCTL commands

Semi-standard,
Linux/BSD compatible
Wireless IOCTL commands

No Ieee802.11 SoftMAC
Other packet radios not shown

WiFi Network Packet TransfersWiFi Network Packet Transfers

net/ wireless/ drivers/wireless/

inet/
(inet sockets)

BSD
Socket

Not shown: ARP, ICMPv6, other protocols

Network
Packets:

Write Buffer

Read-ahead
Buffer

ieee802.11/
(network driver,

FullMAC)

Packet
Buffer(s)

tcp/ udp/
(protocol stacks)

Event Handler

WiFi SoftMAC vs FullMAC ChipsetsWiFi SoftMAC vs FullMAC Chipsets

Software Hardware

FullMAC Chipset
(Hardware MLME)

SoftMAC Chipset
(No MLME)

MAC
● Media Access

Control
● Part of OSI Layer 2

MLME
● MAC Sublayer

Management Entity
● Also Layer 2

MAC
● Media Access

Control
● Part of OSI Layer 2

MLME
● MAC Sublayer

Management Entity
● Also Layer 2

Software MLME

Supplicant

MLME

Supplicant

MAC

Physical

app

Layer 2

MLME is the management entity where the MAC
state machines reside.

IEEE 802.11 SoftMAC / FullMAC Architecutre
(Future Development)

IEEE 802.11 SoftMAC / FullMAC Architecutre
(Future Development)

net/

netdev/
(network ioctls)

wireless/

Ieee802.11/
(Common Upper

Layer)

Ieee802.11/
(network driver)

ieee802.11/
(FullMAC device)

drivers/wireless/

IEEE802.11 network driver
● Belongs in wireless/

Linux-like layering:
● cfg80211

common upper later
● mac80211

SoftMAC MLME

IEEE802.11 network driver
● Belongs in wireless/

Linux-like layering:
● cfg80211

common upper later
● mac80211

SoftMAC MLME

ieee802.11/
(SoftMAC device)

Ieee802.11/
(MLME)

Partial port of NetBSD SoftMAC:
https://github.com/nuttx/nuttx_ieee80211

Partial port of NetBSD SoftMAC:
https://github.com/nuttx/nuttx_ieee80211

VFS
ioctl()

Supplicant

Bluetooth TransfersBluetooth Transfers

net/ wireless/

bluetooth/
(MAC)

bluetooth/
(network driver)

drivers/wireless/

bluetooth/
(HCI UART drivers)

BSD
Socket

Raw
Packet:

bluetooth/
(raw socket)

IEEE802.15.4/PktRadio 6LoWPAN TransfersIEEE802.15.4/PktRadio 6LoWPAN Transfers

net/ wireless/

ieee802.15.4/
(MAC)

ieee802.15.4/
(network driver)

drivers/wireless/

ieee802.15.4/
(radio drivers)

BSD
Socket

Bluetooth could
support 6LoWPAN
over LDAP

tcp/ udp/ icmpv6
(protocol stacks)

sixlowpan/
(6LoWPAN)

inet/
(inet IPv6 sockets)

Network
Packets:

Compressed
Radio
Frames:

pktradio/
(network driver)

spirit/
(pktradio MAC)

6LoWPAN
(optional)

Layer 2

Node 1

Node 2

Node n

...

Compressed, Fragmented
Packets

Packet
Conversion

Packet
Conversion

Standard IPv6 Packets

HUB

PC

Router

Another
WPAN
HUB

Based on the IPv6 address, IP forwarding
can forward standard IPv6 packets out of
the WPAN and can forward Ethernet
packets into WPAN radio nodes.

Based on the IPv6 address, IP forwarding
can forward standard IPv6 packets out of
the WPAN and can forward Ethernet
packets into WPAN radio nodes.

Ethernet

Access
Point

IEEE802.15.4/6LoWPAN WPAN Gateway
IP Forwarding

IEEE802.15.4/6LoWPAN WPAN Gateway
IP Forwarding

Examples: Drone Swarms, IoT Base Station
in a Star configuration, Edge Router, WPAN
debug

Examples: Drone Swarms, IoT Base Station
in a Star configuration, Edge Router, WPAN
debug

Route-Over Routing

Tx Event Handler “Rendezvous”Tx Event Handler “Rendezvous”

Network Hardware

Network Driver

Network
Application

BSD Socket
send()/sendto()

Interface

Tx
Poll

1. Set up Tx
event handler

2. Tx Availability Notification

Packet Buffer(s)

3.Poll when packet
can be accepted

4. Tx packet formatted

Bottom-Up Control

Write Buffer

Tx Event Handler

5. Packet sent
(or queued)

Network Driver InterfaceNetwork Driver Interface

● struct net_driver_s defined in
include/nuttx/net/netdev.h

● Provided by network driver all each call into the
network stack

“Bottom-Up Control”
● Network driver controls many events. uIP heritage.
● The NuttX stack is an original work.
● It is not uIP but uses the TCP state machine and checksum
● algorithms from uIP

Rx Packet Input
● IPv4, IPv6 packet input
● 6LowPan frame input
● Raw packet tap

Tx Polling
● Poll for Tx Packets
● Periodic Poll (TCP Protocol, socket option time outs, TCP

Keepalive, etc.)

MAC Addressing
● ARP/IPv6 Neighbor Table Access
● Other protocols
● Needed for destination MAC address in outgoing Tx packets

Rx Packet Input
● IPv4, IPv6 packet input
● 6LowPan frame input
● Raw packet tap

Tx Polling
● Poll for Tx Packets
● Periodic Poll (TCP Protocol, socket option time outs, TCP

Keepalive, etc.)

MAC Addressing
● ARP/IPv6 Neighbor Table Access
● Other protocols
● Needed for destination MAC address in outgoing Tx packets

Network Driver Interface
Driver calls into Network

Network Driver Interface
Driver calls into Network

Network Driver Interface
Driver calls into Network

Network Driver Interface
Driver calls into Network

Network
Stack

Network
Driver

Packet input

MAC Addressing

Tx Poll

Periodic Poll

struct net_driver_s instance passed with each call

Network Driver Interface
struct net_driver_s Content (simplified)

Network Driver Interface
struct net_driver_s Content (simplified)

Network layer callbacks into Driver* device index

Data Link Layer 2 Information
● Data link layer protocol, header length
● MAC address

Network Layer 3 Information
● IP Addresses, router IP address, subnet mask
● Multicast group information

Packet Buffer
● Packet buffer, packet size, maximum packet size

Statistics

Network layer callbacks into Driver*

Network layer callbacks into Driver* device index

Data Link Layer 2 Information
● Data link layer protocol, header length
● MAC address

Network Layer 3 Information
● IP Addresses, router IP address, subnet mask
● Multicast group information

Packet Buffer
● Packet buffer, packet size, maximum packet size

Statistics

Network layer callbacks into Driver*

* IOCTL Commands
● May be handled at different levels
● Socket level IOCTL commands handled in net/ logic
● Unhandled IOCTL command forwarded to Network Driver
● Unhandled IOCTL command forwarded to MAC layer
● Unhandled IOCTL command forwarded to radio driver
● Unhandled IOCTL commend generates error code

Addition 6LoWPAN layer callbacks into Radio Drivers
● Radio Frame MAC header length
● Outgoing Radio Frames
● Radio Properties

*Network layer callbacks into Driver
● Interface Up/Down
● Tx data available notification
● Address filtering
● Forwarded IOCTL commands*

Network Driver Interface
Network Callbacks into Driver

Network Driver Interface
Network Callbacks into Driver

Network Driver Interface
Network calls into Driver

Network Driver Interface
Network calls into Driver

Network
Stack

Network
Driver

Packet input

MAC Addressing

Tx Poll

Periodic Poll

Tx Notifcation

I/F Up/Down

Address Filtering

IOCTLs

Plus 6LoWPAN Radio Driver Calls

WiFi Modules / Userspace SocketsWiFi Modules / Userspace Sockets

WiFi Module

UART Lowerhalf
Driver

UART Upperhalf
Driver

Network
Application

BSD Socket
Interface

USRSOCK Character
Device Drivier

USRSOCK

USRSOCK Daemon

● net/usrsock
● Bypasses NuttX network stack

● net/usrsock
● Bypasses NuttX network stack

● Uses network stack
on WiFi module

● Uses network stack
on WiFi module

Eg. Telit GS2200M WiFI Module

WiFi/Bluetooth ToolsWiFi/Bluetooth Tools

WAPI
● Used to manage 802.11 Network
● Subset: help, show, scan, ip, mask, freq, essid, mode, ap,

bitrate, txpower

WiFi Tools: Interface via Linux-compatible Network IOCTLs

btsak
● Bluetooth Swiss Army Knife
● Top level commands: help, info, features, scan, advertise,

security, gatt
● Gatt commands: exchange-mtu, mget, discover,

characteristic, descriptor, dget, read, read-multiple, rget,
write, wget

Bluetooth Tools:
● Interface via Network IOCTLs
● Most derive from NetBSD

IEEE 802.15.4 ToolsIEEE 802.15.4 Tools

IWPAN
● Similar to WAPI
● Inspired by iwpan on Linux
● Use to manage IEEE 802.15.4 PAN
● Radio settings: cca, chan, devmode, eaddr, panid, promisc, saddr, txpwr
● MAC commands: assoc, disassoc, get, gets, poll, rxenab, scan, set, start,

sync

Interface via
● BSD Socket IOCTLs or
● IEEE802.15.4 Backdoor Serial driver

I8sak
IEEE802.15.4 Swiss Army Knife
Commands: help, acceptassoc, assoc, blaster, get, poll, regdump, reset,
scan, set, sniffer, startpan, tx

I8shark
IEEE 802.15.4 Wireshark Adaptor
Packet capture and analysis

Future IoT ComponentsFuture IoT Components

Kernel- vs. Application-Space Components
● No new, non-standard OS interfaces; Must use existing POSIX

interfaces: BSD socket interface is the preferred interface

New Network Stack Components
● Most elements may require extensions to networking, such as:
● New socket address families under net/
● New MAC implementations under wireless/

New IoT Applications

Integrated IoT Applications and Network
● Example, mesh routing requires integration of application-level

routing and network stack routing information for discovery and
mesh maintenance

● Recommended Solution: Netlink sockets.

Kernel- vs. Application-Space Components
● No new, non-standard OS interfaces; Must use existing POSIX

interfaces: BSD socket interface is the preferred interface

New Network Stack Components
● Most elements may require extensions to networking, such as:
● New socket address families under net/
● New MAC implementations under wireless/

New IoT Applications

Integrated IoT Applications and Network
● Example, mesh routing requires integration of application-level

routing and network stack routing information for discovery and
mesh maintenance

● Recommended Solution: Netlink sockets.

Future IoT Components – Netlink SocketsFuture IoT Components – Netlink Sockets

Netlink Sockets
● Superficially compatible with Linux Netlink sockets
● Provide application access to internal network services
● For example: Access to internal routing and node discover for

IoT meshes
● Status: Socket layer fully implemented/verified. Currently no

network services.

Netlink Sockets
● Superficially compatible with Linux Netlink sockets
● Provide application access to internal network services
● For example: Access to internal routing and node discover for

IoT meshes
● Status: Socket layer fully implemented/verified. Currently no

network services.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

