

NxWM Threading Model

Main
Thread

NX Server
Thread

CCallback

Touchscreen
Listener
Thread

NX Event
Callback Messages

Mouse
Events

Hardware
Touchscreen

Events
Starts window manager,
ConfiguresTouchscreen

calibration, and exits.

NuttX
NX Graphics

Interface

Messag
e

Queue
CWidgetControl

CWindowEventHandler

CWindowMessenger

NX Listener Thread
- Receive Messages
- Record state data
- Raise events
- Send message

Message
Queue

NX Drawing
Interface
Proxies

Message
Queue

Note: Many
Copies, one per

window

C
W

id
ge

tC
on

tro
l

Classes that
derive from
CNxWidget

Events include
- Mouse input
- Keyboard input
- Positional input
- Redraw notifications

Note: Many Copies,
one per widget

Main, start-up thread

Touchscreen listener thread

NX server thread

NX listener thread

Start window thread

Touchscreen
Device Driver

Interface

There may be application threads associated
 with each application (not shown) Keyboard

Listener
Thread

Console
Device
Driver

Interface

Keyboard
Events

Mouse
Events

Console
Input

Start Window Task
The start window task drives all widgets. The function receives window events from
the NX listener threads indirectly through this sequence:

1) NX listener thread receives a windows event. This may be a positional change
notification, a redraw request, or mouse or keyboard input.

2) The NX listener thread performs the callback by calling a NXWidgets::CCallback
method associated with the window.

3) NXWidgets::CCallback calls into NXWidgets::CWidgetControl to process the
event.

4) NXWidgets::CWidgetControl records the new state data and raises a window
event.

5) NXWidgets::CWindowEventHandlerList will give the event to
NxWM::CWindowMessenger.

6) NxWM::CWindowMessenger will send the a message on a well-known message
queue.

7) This CStartWindow::startWindow task will receive and process that message.

Window Events
Specific application

IApplication

INxWindow

CCallback

CWindowMessenger

Specific window

CWidgetControl

IWindowEventHandler

12

3

4

1. Redraw, position change, keyboard or mouse input or
blocked event received and a static CCallback method
is called.

2. static CCallback method invokes a method in
CWidgetControl.

3. CWidgetControl saves event related data and raises
the associated event.

4. Most window events arecaught by
CWindowMessenger that inherits from
IWindowEventHandler. CWindowMessengeer sends
message to the start window thread from further
processing.

What happens in the start window thread depends on
the event. For most.events, a message is sent to the
start window thread for additional processing.

CWidgetEventHandler

CImage Stop Widget

Window Destruction (Part 1 of 2)
Specific application

IApplication

INxWindow

CCallback

CWindowsMessenger

Specific window

CWidgetControl

IWindowEventHandler

1

Window Destruction is more complicated. Window
destruction is initiated by pressed the STOP button on
the toolbar.

1. Widget events are raised by the
CWidgetEventHandlerList that is inherited by every
widget and caught by the NxWM application's
CWidgetWeventHandler methods. The
CWidgetWeventHandler is really part of the application's
toolbar (CToolbar, but that is not illustrated)

2. The stop icon touch event causes the application tool
bar's event handler to invoke the
CTaskbar::stopAppliation method in the task bar.

3. The task bar then invokes(1) the application's stop()
method which stops any threads and cleans-up any
active resources. Then the task bar calls the
nxtk_block() which will stop all communications with the
window and will flush the message queues.

The application then waits for the message queues to be
flushed in a deactivated/disabled state.

CWidgetEventHandler

3

CImage Stop Widget

2
RaiseDestroyEvent() → handleDestroyEvent()

CTaskbar::stopApplication

IApplication::stop

Window Destruction (Part 2 of 2)
Specific application

IApplication

INxWindow

CCallback

CWindowsMessenger

Specific window

CWidgetControl

IWindowEventHandler

45

The call to nxtk_block() will block sending of messages
to the window. nxtk_block() will send one final message
that, when received, indicates both that the
communications with the window are blocked and that
there are no further queued messages for the window.

4. The blocked message is received and the static
CCallback::windowBlocked() method is called.

5. The static CCallback::windowBlocked() method
invokes the CWidgetControl::windowBlocked() method.

6. The method does nothing except to raise the
blocked event.

7. CWindowMessenger::handleBlockedEvent catches
the blocked event can then sends a message to the
start window window thread.

In the start window thread, the application can be safely
deleted the application.

CWidgetEventHandler

CImage Stop Widget

CCallback::windowBlocked()

CWidgetControl::windowBlocked()6

7

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

