
OpenAMP

Xiang Xiao
2020.3.6

SMP vs AMP(1)

• SMP on homogeneous
architectures:
• Single OS controlling two or more

identical cores sharing system
resources

• Dynamic scheduling and load
balancing

SMP vs AMP(2)

• AMP on heterogeneous
architectures:
• Different OS on each core -->

full-featured OS alongside a
real-time kernel

• Inter processor communication
protocol

• Efficient when the application
can be statically partitioned
across cores - high performance
is achieved locally

SMP vs AMP(3)

• How does it work?
• There is a concept of

master and slave
• Master manages

shared memory
• Master may control

slave’s life-cycle

Remoteproc(1)

• Provides user APIs to do life cycle management of the remote system
and manage the resources of the remote system.
• load remote system image
• setup resources for the remote system
• start the remote system
• manage the resource of the remote system
• suspend the remote system
• restore the remote system
• stop the remote system
• release the resource of the remote system
• shutdown the remote system and release its source

Remoteproc(2)

• Framework API
• rproc_alloc(…, ops, firmware, …)
• rproc_add()
• rproc_del()
• rproc_put()

• Driver callback
• start()
• stop()

Remoteproc(3)

• A resource table is essentially a list of system resources required by
the remote system. It may also include configuration entries. e.g.
virtio configuration space. If needed, the remote firmware should
contain this table as a dedicated ".resource_table" ELF section.

Virtio(1)

Virtio(2)

Virtio(3)

Virtio(4)

Rpmsg(1)

Rpmsg(2)

Rpmsg(3)

Rpmsg(4)

Rpmsg(5)

• Naming service
• Convert the name to port number
• Two phase handshake
• Fix port number(53)

API(1)

• Initialize
• rpmsg_register_callback

• The peer callback
• device_created
• device_destroyed

• Create endpoint
• rpmsg_create_ept

• The endpoint callback
• rpmsg_bind

API(2)

• Send data
• rpmsg_send
• rpmsg_get_tx_payload_buffer
• rpmsg_send_nocopy

• Receive data through callback
• rpmsg_ept_cb
• rpmsg_hold_rx_buffer
• rpmsg_release_rx_buffer

API(3)

API(4)

• Support the multiple remote pair
• Support the multiple channel
• The channel is identified by unique name
• Convert to the unique id for space/speed
• The channel is bidirectional
• The buffer size and number is configurable
• Don’t support command/response

Rpmsg Syslog(1)

• Redirect log to master core
• Linux kernel, NuttX…

• Work as early as possible
• Two phase initialization

• Never lost the log
• Hang during boot or runtime
• Full system crash(panic, watchdog…)

22

Circle Buffer

1.syslog_rpmsg_init_early:
a.set the buffer location
b.recover the last unprinted log
c.can call syslog/printf now
d.but can't send to kernel yet

2.syslog_rpmsg_init:
a.create "rpmsg-syslog" channel
b.flush the buffer to kernel when
-channel connected
-idle timeout
-buffer near full

Exposed by remoteproc at:
/sys/kernel/debug/remoteproc/remoteproc0/trace0
inspect through resource table from firmware ELF file

rpmsg-syslog

3.rpmsg syslog service:
a.printk to ramlog or console
b.notify client it is safe to remove log

RTOS Linux

Rpmsg Syslog(2)

Rpmsg TTY

• Like pseudo terminal but between two CPU
• No different from real tty(open/read/write/close)
• Full duplex communication
• Support multiple channels as need

• Connect RTOS shell
• Make integrated GPS like external(NMEA)
• Make integrated modem like external(ATCMD)

Rpmsg CLK

• Make RTOS access Linux clock framework
• Clock tree in RTOS could contain

• The real clock
• The rpmsg clock
• Mix both

Linux

OSC

PLL

DIV

MuX

Div

rpmsg-clk

RTOS

Proxy

Mux

32KHz

Gate

PLL2

Rpmsg HostFS

• Like NFS but between two CPU
• Fully access Host(Linux/NuttX) File system

• Save the tuning parameter during manufacture
• Load the tuning parameter file in production
• Save audio dump to file for tuning/debugging
• Dynamic loading module from host

Rpmsg Net(1)

• Rpmsg Usrsock Client(AP)
• Rpmsg Usrsock Server(SP)
• Rpmsg Net Driver(SP)
• Rpmsg NBIoT Adapter(CP)

Usrsock
Networking

SP

POSIX Socket API

COAP HTTP
Usrsock Client

/dev/usrsock

Application

AP

OpenAMP

Usrsock Server

Rpmsg Net(2)

Audio Topology(1)

Audio Topology(2)

Audio Topology(3)

Audio Topology(4)

Conclusion

• It is very important and flexible to separate
• Transport layer and Application layer

• Don’t expose rpmsg channel directly
• Encapsulate into driver/fs/net subsystem
• No difference from real device for caller

• Enhancement
• More proxy for regulator/pinctrl…
• New PF_RPMSG family for SunRPC/Protobuf…

